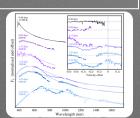
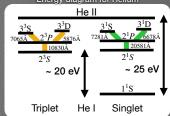
Helium Absorption Lines in Kilonova Spectra

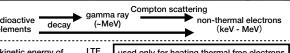
Koya Chiba, Masaomi Tanaka (Tohoku University), Kenta Hotokezaka (The University of Tokyo)


Introduction


Email: chiba.koya@astr.tohoku.ac.jp

1 µm P-Cygni feature in the early spectra of kilonova | Helium absorption lines in KNe/SNe spectra

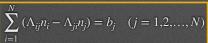
Binary neutron star (BNS) merger


- in LTE radiative transfer simulations
 - taking into account the "Non-LTE" effect

first excitation energy

kinetic energy of non-thermal electrons used not only for above Q_{dep} but for exciting and ionizing atoms and ions

pure helium plasma 0.6 0.4


This study

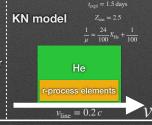
- Type la Supernova (Type la SN).

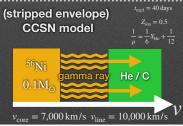
Method

Rate Equation

helium atomic data reference: Nahar 2010; Ralchenko+ 2008; NIST ASD (Kramida+

(Lucy 1991; Hachinger+ 2012) * Λ_{ii} and b_i depend on atomic data

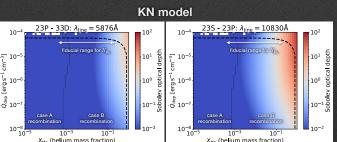

state k


ionization rate [cm⁻³ s⁻¹]

- $D_{\mathrm{ion}}^{\mathrm{pure}}$: deposition fraction for ionization in the pure helium plasma
- Y_{He} : number fraction of helium
- $\dot{Q}_{
 m dep}$: heating rate by non-thermal electrons
- I_{ion}: ionization potential

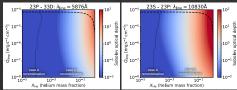
Ejecta model

- We assume $\rho_{\rm line}=10^{-14}\,{\rm g~cm^{-3}}$, $\,T=5{,}000\,{\rm K}$ in the line forming region for all models.
- We define $ho_{
 m core}$ for SN model in order to consider gamma ray transfer effect from the core region.
- $n_{e,\text{free}} = n_{e,\text{free}}^{\text{He}} + (1 X_{\text{He}}) \frac{\rho_{\text{line}}}{\mu m_u} Z_{\text{ion}}$



Ionization by non-thermal electrons

Result & Discussion


st thick black dashed line: fiducial $\dot{Q}_{
m dep}$ for each model

 $\lambda_{
m line} f_{
m lu} n_l t_{
m expl}$

(stripped envelope) CCSN model

Type la SN model

- Helium absorption line strength is less dependent on $\dot{Q}_{
 m dep}$, but strongly dependent on $X_{
 m He}$.
- fiducial condition: $X_{
 m He}\gtrsim0.1$ (Note that there is a large uncertainty about $X_{
 m He}$ in BNS merger ejecta.)