# Development of the near-ultraviolet imager SCUID on the 1.5m Kanata Telescope

**Akitaya, H.**<sup>1,2,3,\*</sup>, Morokuma<sup>1,2</sup>, T., Kawabata, K. S.<sup>3</sup>

- 1: Astronomy Research Center, Chiba Institute of Technology
- 2: Planetary Exploration Research Center, Chiba Institute of Technology
- 3: Hiroshima Astrophysical Science Center, Hiroshima University
  - \*: E-mail: akitaya@perc.it-chiba.ac.jp; WWW page: https://www.perc.it-chiba.ac.jp/astr/arc/

# 千葉工業大学 HIROSHIMA UNIVERSITY

# [1] Introduction

- We are developing an imager, *SCUID*, with a high throughput at near-ultraviolet (NUV) wavelengths (300-400 nm; ~u-band), for a ground-based telescope (1.5-m Kanata telescope at Higashi-Hiroshima Observatory, Japan; Fig. 1).
- The optical design and detector selection are optimized for the NUV range, at the expense of efficiency at longer wavelengths. The peak efficiency we are expecting at uband is ~32 percent, including atmosphere and telescope optics.
- At u-band, the limiting magnitude with a singal-to-noise (S/N) ratio of 5 corresponds to ~20.2 ABmag for 100 seconds of exposure.

This allows us to detect NUV emission from nearby transient objects, for example, a kilonova from a neutron star merger (as GW170817) closer than 130 Mpc within a day after its collapse (Fig. 2).



Fig. 1: Kanata telescope.

# Kilonova (GW170817); Villar+17 u, U, F336W

Fig. 2: Kilonova (GW170817 associated) light curve.

# Imager and filter cells

# [2] Design and specifications

### Components

- **Telescope:** Kanata Telescope; Higashi-Hiroshima
  - ✓ SDSS u-band filter: A specially designed
  - ✓ Medium-band pass filters u-short (300-350nm) and u-long (350-410nm) (Edmund Optics), and SDSS g', r' filters (Baader Planetarium).
  - colored glass filter for objective spectroscopy.
- Optics: a corrector lens unit. (Fig. 4)
  - ✓ A corrector lens unit, consisting of a pair of CaF₂
- **Detector:** a CMOS image sensor Gpixel GSENSE400 BSI UV (2048 x 2048 pixels; 11 µm/pix, QE: 45-70% at NUV) on FLI KL400 cooled camera module.
- (Polarimetry unit with a half-wave plate and a wire-grid



Fig. 3: (a) The u-band filter and (b) transmittance curves of the filters.



(b) Mechanical design

- Observatory (HHO) (1.5-m diameter; f/12.2; Ritchey-Chretien; 2nd Nasmyth focus; elevation of 511.2 m.)
- **Filters:** (Fig. 3)
  - interference filter (Asahi-spectra Co., Ltd.).

  - ✓ A transmission grating (400 gr/mm) with a BG38
    - and fused silica lenses, is designed to achieve a good image quality (>80 % encircled energy in a pixel) over the FOV. AR coating design is also optimized for NUV wavelengths. Design and manufacture are by Photocross, Co. Ltd.
- polarizer will be installed.)



- necessary in the current state.)
- Polarimetry unit development.
- Next on-sky observation will be conducted in late 2024.

## **Specifications**

- Imaging with 5' x 5' FOV (0.14 arcsec/pixel), objective spectroscopy, (and linear polarimetry in the future).
- Total throughput at u-band including telescope mirrors, atmosphere, and the filter: ~32% at the peak (Fig. 5)



Fig. 5: Throughput estimation of the imager. Total efficiency of the imager through the u-band filter (black) and efficiency of the fore-optical components (other lines).

Expected limiting magnitudes S/N=5 (AB) 20 for a point source (Fig. 6): S/N=20: ~17.2 magAB (10sec) / ~18.6 magAB (100sec) S/N=5: ~18.6 magAB (10sec) / ~20.2 magAB (100sec) Fig. 6: Expected limiting magnitudes (at



# [3] On-sky observation

- We performed the first on-sky observation of the imager at the Kanata telescope in March 2024.
- The observational data has preliminarily confirmed the targeted performances of the imager. The analysis is still ongoing.

# (1) Quality and detection limit of the first light images

Images of the open cluster NGC 2355 were obtained at u-band with a 60-second exposure.

- The faint sources excepted from the S/N calculations have been well detected (Fig. 7). - Images with seeing limited point sources over the FOV have been

obtained as designed.



Fig. 7: NGC 2355 (u-band, 60 sec) with magnitudes from SDSS DR7.

# (2) Atmospheric extinction at u-band

Atmospheric extinction at u-band during clear nights on March 9 and 10, 2024, was measured to be 0.75 mag/airmass (= transmittance of 50 %) on average by observing stars with U-band magnitudes in the literature, which is in accordance with the estimation from the LOWTRAN7 atmospheric model (Kneizys88) assuming an elevation of HHO (511 m). (Fig. 8)



Fig. 8: (a) Atmospheric extinction measurements at u-band by observing stars with various airmasses. (b) Measured atmospheric transmittance (cross marks) and those of existing observatories (filled markers) with LOWTRAN7 model calculations (solid lines).



# [4] Recent improvements and Future prospects

- A remote filter exchange unit and a remote instrument exchange unit will be installed. (Manual filter exchange operation is
- → The imager will be available on the Kanata telescope as one of the resident instruments.







# Acknowledgements

- Toray Science and Technology Grant (project number 22-6310) by Toray Science Foundation
- Advanced Technology Center, National Astronomical Observatory of Japan

Participants in the U-band Instrument mini workshop in July 2023 (at Tsudanuma, Chiba Institute of Technology)