Sub-photospheric GeV-TeV Neutrinos from Gamma Ray Burst Jets : Impacts of Central Engine Time Variabilities

GeV-TeVニュートリノを⽤いた GRB駆動機構の時間変動・ジェット中の中性⼦量の推定

Kanako Nakama (Tohoku Univ.)

collaborators: Kazumi Kashiyama (Tohoku Univ.), Nobuhiro Shimizu (Chiba Univ.)

Gamma Ray Burst (GRB)

 \checkmark "Brightest" electromagnetic radiation $L_{iso} \sim 10^{52}$ erg/s in MeV γ ray $\sqrt{\text{Relative jet}}$ v > 0.9999 c (Lorentz factor $\Gamma \sim 100\text{-}1000$)

The fireball model for GRBs

disk ... high $\dot{M} \rightarrow$ thermal equilibrium state ... neutron rich a comparable number of neutrons to protons in the jet

Unsolved problems in GRBs

- 1. Baryon loading … where & how
- 2. Acceleration mechanism
- 3. Radiation mechanism

Messenger from sub-photospheric dissipation can be the key?

GeV-TeV $v!$

Sub-photospheric dissipation via inelastic proton-neutron collisions

(1) Proton-neutron decoupling Bahcall & Meszaros 2000

(2) Internal shocks e.g., Beloborodov 2017

GeV-TeV neutrino astrophysics with BOAT GRB

Murase et al 2022, Ice Cube collaboration2022

- A meaningful constraint on the neutron abundance in the jet was obtained for the first time!
- The theoretical template of the GeV-TeV neutrino spectrum is calculated based on the "one-zone" model, i.e., decoupling and collisions in a uniform jet with a set of constant Lorentz factor and relative velocity.

Motivation of this study

The gamma-ray light curve of the brightest of all time (BOAT) GRB 221009A Fermi LAT collaboration 2024

Q: How does the time variability of the jet affect the subphotospheric dissipation and the neutrino emission?

The Monte Carlo simulation of a variable (long-)GRB jet

e.g., Kobayashi et al 97; Beloborodov 00

- Modeling of the time variability
	- Variability timescale ot $\delta t = 1$ ms, 10ms, 100ms \checkmark
	- Lognormal distribution of the baryon loading \checkmark

$$
P(\xi) = \frac{e^{-\xi^2/2}}{\sqrt{2\pi}}, \qquad \ln\left(\frac{\eta - 1}{\eta_0 - 1}\right) = A\xi. \qquad \boxed{\mathbf{A} = 1, 2, 4}
$$

Record

- \checkmark Internal shocks
- \checkmark Proton-neutron decoupling

Calculate neutrino spectra with geant4 $\mathbf{(3)}$

We newly include the dissipation processes at sub-photosphere!

Results: radii and relative Lorentz factors of the internal shocks

Due to the time variability, the inelastic proton-neutron collisions occur at various radii and relative Lorentz factor.

Results : Light Curve

Photons and neutrinos arrive almost simultaneously.

Result : GeV-TeV Neutrino energy spectra

• *Even for a given jet luminosity and neutron abundance, more variable, i.e., smaller* δt *or larger A, more neutrinos!* • *The neutrino spectra becomes broader both at lower and higher energies.*

Results : efficiency of neutrinos V.S. efficiency of gamma rays

To detect GeV-TeV neutrinos, less luminous GRBs are rather expected.

Summary

- l GeV-TeV neutrinos are produced at Sub-photospheric dissipation via inelastic protonneutron collisions , which are sensitive to how the baryons are loaded in and accelerated in the fireball, which cannot be directly probed by electromagnetic waves.
- We study how does the time variability of the jet affect the subphotospheric dissipation and the neutrino emission?
- In Monte Carlo simulation of variable jet, we newly include the dissipation processes at sub-photosphere.
- Due to the time variability, the inelastic proton-neutron collisions occur at various radii and relative Lorentz factor.
- Increasing the variability causes the sub-photospheric dissipation to become too strong, resulting in less energy being transferred to the prompt and afterglow phases. \Rightarrow MeV gamma bright = GeV-TeV neutrino dim and vice versa,