Sub-photospheric GeV-TeV Neutrinos from Gamma Ray Burst Jets : Impacts of Central Engine Time Variabilities

Kanako Nakama (Tohoku Univ.)

collaborators : Kazumi Kashiyama (Tohoku Univ.), Nobuhiro Shimizu (Chiba Univ.)

Gamma Ray Burst (GRB)

✓ "Brightest" electromagnetic radiation L_{iso} ~ 10⁵² erg/s in MeV γ ray
 ✓ Relativistic jet v > 0.9999 c (Lorentz factor Γ ~ 100-1000)

The fireball model for GRBs

disk ... high $\dot{M} \rightarrow$ thermal equilibrium state ...neutron rich a comparable number of neutrons to protons in the jet

Unsolved problems in GRBs

- 1. Baryon loading ... where & how
- 2. Acceleration mechanism
- 3. Radiation mechanism

Messenger from sub-photospheric dissipation can be the key?

GeV-TeV V

Sub-photospheric dissipation via inelastic proton-neutron collisions

(1) Proton-neutron decoupling Bahcall & Meszaros 2000

(2) Internal shocks e.g., Beloborodov 2017

GeV-TeV neutrino astrophysics with BOAT GRB

Murase et al 2022, Ice Cube collaboration2022

- ✓ A meaningful constraint on the neutron abundance in the jet was obtained for the first time!
- ✓ The theoretical template of the GeV-TeV neutrino spectrum is calculated based on the "one-zone" model, i.e., decoupling and collisions in a uniform jet with a set of constant Lorentz factor and relative velocity.

Motivation of this study

The gamma-ray light curve of the brightest of all time (BOAT) GRB 221009A Fermi LAT collaboration 2024

Q: How does the time variability of the jet affect the subphotospheric dissipation and the neutrino emission?

The Monte Carlo simulation of a variable (long-)GRB jet

e.g., Kobayashi et al 97; Beloborodov 00

- **1** Modeling of the time variability
 - ✓ Variability timescale $\delta t = 1$ ms, 10ms, 100ms
 - \checkmark Lognormal distribution of the baryon loading

$$P(\xi) = \frac{e^{-\xi^2/2}}{\sqrt{2\pi}}, \quad \ln\left(\frac{\eta-1}{\eta_0-1}\right) = A\xi.$$
 A = 1, 2, 4

Record

- \checkmark Internal shocks
- \checkmark Proton-neutron decoupling

3) Calculate neutrino spectra with geant4

We newly include the dissipation processes at sub-photosphere!

Results : radii and relative Lorentz factors of the internal shocks

Due to the time variability, the inelastic proton-neutron collisions occur at various radii and relative Lorentz factor.

Results : Light Curve

Photons and neutrinos arrive almost simultaneously.

Result : GeV-TeV Neutrino energy spectra

Normalization for BOAT GRB 10^{-1} -- $\delta t = 10 \text{ms}, \text{ A} = 4$ $-\delta t = 1 ms$, A = 4 $\delta t = 10 \text{ms}, A = 2$ 10^{-2} $\delta t = 1 ms, A = 2$ Fluence $\left[erg/cm^2 \right]_{-01}$ $\delta t = 10 \text{ms}, A = 1$ $\delta t = 1 \text{ms}, A = 1$... IceCube Template : upper-limit from IceCube IceCube Collaboration 2023 10^{-4} 10^{-5} 10^{-6} 10^{3} 10^{2} 10^{4} 10^{1} Energy [GeV]

Even for a given jet luminosity and neutron abundance, more variable, i.e., smaller δt or larger A, more neutrinos!
The neutrino spectra becomes broader both at lower and higher energies.

Results : efficiency of neutrinos V.S. efficiency of gamma rays

MeV gamma bright = GeV-TeV neutrino dim and vice versa To detect GeV-TeV neutrinos, less luminous GRBs are rather expected.

Summary

- GeV-TeV neutrinos are produced at Sub-photospheric dissipation via inelastic protonneutron collisions, which are sensitive to how the baryons are loaded in and accelerated in the fireball, which cannot be directly probed by electromagnetic waves.
- We study how does the time variability of the jet affect the subphotospheric dissipation and the neutrino emission?
- In Monte Carlo simulation of variable jet, we newly include the dissipation processes at sub-photosphere.
- Due to the time variability, the inelastic proton-neutron collisions occur at various radii and relative Lorentz factor.
- Increasing the variability causes the sub-photospheric dissipation to become too strong, resulting in less energy being transferred to the prompt and afterglow phases.
 MeV gamma bright = GeV-TeV neutrino dim and vice versa,