Optical and infrared observations for GW/neutrino sources

Masaomi Tanaka (Tohoku University) on behalf of the A03 team Nozomu Tominaga (NAOJ), Kazuya Matsubayashi (U. Tokyo), Koji Kawabata (Hiroshima U.), Kouji Ohta (Kyoto U.),

- Yoichi Yatsu (Titech), Kotaro Niinuma (Yamaguchi U.), Tomoki Morokuma (CIT)

• Roles of optical and infrared observations

Gravitational wave sources

• High-energy neutrino sources

Multi-messenger astrophysics: roles of optical/IR observations

Gravitational wave

Accurate position (C) NSF/LIGO/ Sonoma State University/A Simonnet (high angular resolution, ~ arcsec) Accurate redshift (high spectral resolution, $\lambda/\Delta\lambda > 1,000$)

Nucleosynthesis in neutron star mergers

High-energy neutrino

(C) IceCube/NASA

Identification of High-E neutrino sources

X, gamma: Data compilation by Stephen Fegan (https://github.com/sfegan/kifune-plot)

X, gamma: Data compilation by Stephen Fegan (https://github.com/sfegan/kifune-plot)

X, gamma: Data compilation by Stephen Fegan (https://github.com/sfegan/kifune-plot) High-E nu: ICECAT-1: the IceCube Event Catalog of Alert Tracks

X, gamma: Data compilation by Stephen Fegan (https://github.com/sfegan/kifune-plot) High-E nu: ICECAT-1: the IceCube Event Catalog of Alert Tracks GW: GWTC1-3 + O4 alert (FAR < 2 / year)

X, gamma: Data compilation by Stephen Fegan (https://github.com/sfegan/kifune-plot) High-E nu: ICECAT-1: the IceCube Event Catalog of Alert Tracks GW: GWTC1-3 + O4 alert (FAR < 2 / year)

A03: Optical/IR/Radio follow-up with multiple facilities

Wide field (HSC) **Spectroscopy (PFS)**

Talk by H. Zhang =>

Subaru (8.2 m)

Kanata (1.5 m)

Talk by K. Taguchi => Seimei (3.8 m)

Wide field

PETREL

Kiso (1 m)

NAO

Wide field

Spectroscopy /monitoring

EA VLBI

TAO (6 m) <= Poster by K. Matsubayashi

• Roles of optical and infrared observations

Gravitational wave sources

• High-energy neutrino sources

Good test case for deep NIR follow-up observations with Subaru

Constraining the nucleosynthesis in NS merger

Element identifications in neutron star mergers

Collaboration with CO2 (Kenta Hotokezaka)

Rahmouni+ submitted

Poster by Salma Rahmouni

Both features are affected by the Earth's atmosphere => Spectroscopy with TAO and JWST!

Poster by Nanae Domoto

• Roles of optical and infrared observations

Gravitational wave sources

• High-energy neutrino sources

R(TDE) ~ 10-7 Mpc-3 yr-1

IceCube-230724A: observations with Subaru/HSC Led by Shigeo Kimura (CO1)

Gold alert (signalness = 0.526, E = 190 TeV) with a good localization

Unfortunately, only 2-epoch follow-up due to the prime mirror issue of Subaru in 2023

Road to the TDE identification

Step 1: Transient detection

By MT, Tomoki Morokuma, Nozomu Tominaga

Development of the entire analysis flow by using the "background" region (A) Number of background events: how many unrelated sources remain (B) True positive rate (or passing rate): how high fraction of true events remain

By Shigeo Kimura (CO1) and Seiji Toshikage

(C) NASA

(C) ESO

Reference image

0.01 deg!

New image

0.01 deg!

Difference image

0.01 deg!

Difference image

Residual of bright star

Transient/Variable

0.01 deg!

Residual of galaxy

Preliminary

Step 2: Source classification

Developed By Shigeo Kimura (CO1)

Light curve cut: blue color, monotonic decline, ...

Only with 2 epoch data

Preliminary

(A) Number of background

Transient type	<pre># of detected transients / deg²</pre>	# of transient passing the criteria / deg
SNe	85	< 0.03
AGN	300	0.53 Main backgrour
TDE (unrelated)	0.26	0.028

(B) True positive rate (of TDE) TPR ~ 0.42

Step 2: Source classification

Developed By Shigeo Kimura (CO1)

Light curve cut: blue color, monotonic decline, ...

5 epoch data (original plan)

TDE scenario is testable with several trials (significant exclusion requires > 5 trials)

Preliminary

(A) Number of background

Transient type	<pre># of detected transients / deg²</pre>	# of transient passing the criteria / deg
SNe	85	< 0.03
AGN	300	0.03
TDE (unrelated)	0.26	0.01

(B) True positive rate (of TDE) TPR ~ 0.47

Summary

Optical and infrared observations

- Wide-field survey + spectroscopy with the telescope network
- Optical spectrograph for TAO + Rapid data analysis system for Subaru/PFS and Seimei
- Gravitational wave
 - No good neutron star merger event in O4 (<=> A02)
 - Heavy element identification in kilonova spectra (<=> CO2)

• High-energy neutrino sources

- Subaru observations for IC singlet event (<=> A01, C01)
 - Background analysis for transient detection and source classification
- Optical data analysis for multiplet events (<=> A01, C01)

Appendix

Event rate of TDE? => Survey with Subaru/HSC

Redshift distribution of TDEs

By Seiji Toshikage

Extended the redshift of TDE samples beyond z=1!

Light-curve of TDE candidates

By Seiji Toshikage