General Relativistic neutrino-Radiation MagnetoHydroDynamics (GRRMHD) simulations of binary neutron star mergers

Submitted to Phys. Rev. Lett. , arXiv:2410.10958 Nature Astronomy 8, 298 (2024), arXiv:2306.15721 Phys. Rev. Lett. 131, 011401 (2023), arXiv:2211.07637

Yuichiro Sekiguchi (Toho Univ.)

Collaborators: K. Kiuchi, K. Hayashi, M. Shibata, S. Fujibayashi, A. Reboul-Salze, A. L.-T. Lam, S. Wanajo

GW170817: dawn of Multi-messenger astrophysics with GW

Detection of GWI708I7

- constraint on neutron star (NS) equation of state by tidal deformability of NS in the late inspiral stage
- measurement of Hubble constant

Observation of AT2017gfo

 the origin of r-process elements like rare earth elements (Lanthanides), Au, Pt, and U is likely to be binary NS

Association of GRB170817

 the central engine of (at least a part of) short hard GRB is binary neutron star merger

How to drive a short GRB jet ?

- Blandford-Znajek mechanism is a promising mechanism to launch the short GRB jet
- Strong (≥ 10¹⁵ G) and coherent magnetic fields which thread the BH horizon are necessary to launch an energetic jet
- Poloidal magnetic fields of binary pulsars estimated by the spin-down period : $B_p \sim 10^{8-12}$ G $\,\ll\, 10^{15}$ G

Tauris et al. 2017

Key question

How to make such a strong coherent magnetic field from NS magnetic field

Beckwith et al. 2008

Generation of coherent magnetic fields

e.g., Moffatt (1978) "Magnetic field generation in electrically conducting fluids"

The averaged induction equation	Electromotive force	mean field random field
$\partial_t \overline{B} = \nabla \times (\overline{U} \times \overline{B} + \overline{\mathcal{E}})$	$\overline{\mathcal{E}} = \overline{u \times b}$	$Q = \overleftarrow{Q} + \overleftarrow{q}$

⇒ small scale turbulent velocity and magnetic fields can generate coherent fields

Kelvin-Helmholtz (KH) instability at the contact shear

Magneto-rotational instability (MRI) in the torus

Generation of coherent magnetic fields

e.g., Moffatt (1978) "Magnetic field generation in electrically conducting fluids"

Generation of coherent magnetic fields

e.g., Moffatt (1978) "Magnetic field generation in electrically conducting fluids"

- ✓ Magnetic field amplification by Kelvin-Helmholtz instability and magneto-rotational instability
- $\checkmark\,$ Subsequent mean field generation by $\alpha\Omega$ dynamo
- ✓ Collimated (θ_{jet} ≈ 12°), Poynting flux dominated jet launched with L_{Poy} ~ 10⁵¹ erg/s (this is NOT the isotropic-equivalent luminosity)
- ✓ Mildly neutron-rich ($X_{n,ave} \sim 0.7$) ejecta with $M_{ej} \ge 0.1 M_{\odot}$

GW190425 and Prompt collapse to a BH

Brief summary of GW190425

Abbott et al. 2020

- ✓ Total mass of BNS : $M_{\rm total} = 3.3 \sim 3.4 M_{\odot}$
 - \Rightarrow expected to collapse promptly to a BH
- ✓ Poor sky localization due to a single detector event
- \checkmark no electromagnetic counterpart is detected

Previous GRMHD simulation for promptcollapse<td

- ✓ Poynting flux dominated jet are NOT launched
- \checkmark No evidence for coherent magnetic field formation
- ✓ (Nearly) equal mass binary \Rightarrow small disk mass $\lesssim 10^{-3} M_{tot}$
- ✓ Short-term simulations up to 26 ms after the merger

	Low-spin Prior $(\chi < 0.05)$	High-spin Prior $(\chi < 0.89)$
Primary mass m_1	1.60–1.87 M_{\odot}	1.61−2.52 <i>M</i> _☉
Secondary mass m_2	$1.46 - 1.69 M_{\odot}$	1.12–1.68 M_{\odot}
Chirp mass ${\cal M}$	$1.44^{+0.02}_{-0.02}M_{\odot}$	$1.44^{+0.02}_{-0.02}~M_{\odot}$
Detector-frame chirp mass	$1.4868^{+0.0003}_{-0.0003}M_{\odot}$	$1.4873^{+0.0008}_{-0.0006}~M_{\odot}$
Mass ratio m_2/m_1	0.8 - 1.0	0.4 - 1.0
Total mass m _{tot}	$3.3^{+0.1}_{-0.1}~{ m M}_{\odot}$	$3.4^{+0.3}_{-0.1} M_{\odot}$
Effective inspiral spin	$0.012\substack{+0.01\\-0.01}$	$0.058\substack{+0.11\\-0.05}$
parameter $\chi_{\rm eff}$		
Luminosity distance $D_{\rm L}$	$159^{+69}_{-72} \mathrm{Mpc}$	$159^{+69}_{-71}{ m Mpc}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤600	≤1100

Set-up of simulation

• Einstein's equations :

- ✓ BSSN formalism (Shibata and Nakamura 1995; Baumgarte and Shapiro 1998)
- ✓ Moving puncture method (Campanelli et al. 2006; Baker et al. 2006)
- ✓ Z4c constraint propagation (Hilditch et al. 2013)

• Magnetohydrodynamics : (Kiuchi et al. 2022)

- ✓ HLLD Rieman solver (Mignone et al. 2009)
- ✓ Divergence-B constraint transport (Gardiner and Stone 2008)
- Magnetic-flux preserving mesh refinement (Balsara 2009)
- Neutrino transfer : (Sekiguchi et al. 2012)
 - ✓ M1 closure (Shibata et al. 2011)
 - ✓ Neutrino heating (Fujibayashi et al. 2017)

- Prescription of BNS :
 - ✓ SFHo equation of state (Steiner et al. 2013) : $M_{\rm max} \approx 2.1 M_{\odot}$
 - ✓ $1.25M_{\odot}$ -1.65 M_{\odot} unequal mass binary ($M_{tot} = 2.9 M_{\odot}$)
 - \checkmark prompt collapse to a BH with $M_{
 m BH} pprox 2.8~M_{\odot}$, $a_{
 m BH} = 0.76$
 - ✓ accretion disk with $M_{
 m disk} \approx 0.06 \, M_{\odot}$ is formed
- Magnetic field :
 - ✓ poloidal magnetic field is superimposed inside the NSs $A_j = A[(x - x_{NS})\delta_j^y - (y - y_{NS})\delta_j^x] \cdot max(P/P_{max} - 2 \cdot 10^{-4}, 0)^{1/2}$
 - ✓ maximum field strength is $\approx 10^{15}$ G
- Grid set-up and timescale :
 - \checkmark 13-level fixed mesh refinement
 - ✓ finest grid resolution : $\Delta x = 150$ m enable to follow the fastest growing mode of magneto-rotational instability

$$\lambda_{\rm MRI} \sim \frac{v_{\rm Alfven}}{\Omega} \sim \frac{B}{\Omega\sqrt{4\pi\rho}}$$

✓ Long-term (> 1 sec) simulation

animation by K. Hayashi

Hayashi et al. submitted to PRL

MRI induced viscosity and dynamo

The fastest growing mode is resolved : partially $(t - t_{merger} \ge 10 \text{ ms})$, fully $(t - t_{merger} \ge 100 \text{ ms})$

 ✓ MRI driven turbulence induces effective viscosity and disk mass decays

 MRI driven turbulence activates the dynamo cycle and coherent magnetic fields are formed

Hayashi et al. submitted to PRL

(Weak) Poynting flux dominated jet is launched

 \checkmark Coherent magnetic fields accrete the BH and further amplified by winding

- ✓ Note also that Prompt collapse to BH \Rightarrow density and ram pressure in the pole region is smaller
- ✓ Collimated (θ_{jet} ~ 10°), Poynting flux dominated jet launched with L_{Poy} ~ 10⁴⁷ erg/s
 ✓ Jet angle gradually increases as matter pressure, which confines the jet, decreases

✓ Prompt BH formation

- ✓ mean field generation by MRI-induced dynamo
- ✓ ram pressure is smaller
- $\checkmark L_{\rm Poy} \sim 10^{47} \ {\rm erg/s} \ , \ \theta_{\rm jet} \sim 10^{\circ} \\ \checkmark M_{\rm ej} \lesssim 0.01 M_{\odot}$

✓ delayed BH formation

- ✓ MRI is resolved
- ✓ ram pressure is stronger than magnetic pressure
- ✓ Jet is not launched in 1 sec after the merger

Kiuchi et al. PRL 2023

- Long-lived NS : amplification by KH instability and MRI
- mean field generation by $\alpha \Omega$ dynamo
- ✓ $L_{\text{Poy}} \sim 10^{51} \text{ erg/s}$, $\theta_{\text{jet}} \approx 12^{\circ}$ ✓ $M_{\text{ej}} \geq 0.1 M_{\odot}$ ($X_{n,\text{ave}} \sim 0.7$)

Kiuchi et al. Nature Astronomy 2024

Hayashi et al. PRL submitted

Technical issues to follow small-scale fields

• High resolution is required

• we adopted $\Delta x_{\text{finest}} = 12.5 \text{m}$ (previously $\Delta x_{\text{finest}} = 150 \text{m}$)to resolve the fastest growing mode of MRI and accurately follow the B-field amplification in KH instability

• Less dissipative MHD solver is advantegeous

• we developed less dissipative HLLD solver (Kiuchi, YS+ 2022) in the framework of NR

 10^{0}

 10^{-1}

 10^{-3}

 10^{-4} L 0.0

0.1

0.2

0.3

 $Y_{\rm e} \left(t - t_{\rm merger} = 1.1 \, \rm s \right)$

0.4

0.5

 $\nabla M/M_{\rm eje}$

 Insufficient coherent B-field ?, too large ram pressure due to shorter simulation time ?

Result for $1.35 - 1.35 M_{\odot}$ with DD2 EOS

