General Relativistic neutrino-Radiation MagnetoHydroDynamics (GRRMHD) simulations of binary neutron star mergers

Submitted to Phys. Rev. Lett. , arXiv:2410.10958 Nature Astronomy 8, 298 (2024), arXiv:2306.15721 Phys. Rev. Lett. 131, 011401 (2023), arXiv:2211.07637

Yuichiro Sekiguchi (Toho Univ.)

Collaborators: K. Kiuchi, K. Hayashi, M. Shibata, S. Fujibayashi, A. Reboul-Salze, A. L.-T. Lam, S. Wanajo

GW170817: dawn of Multi-messenger astrophysics with GW

• Detection of GW170817

- constraint on neutron star (NS) equation of state by tidal deformability of NS in the late inspiral stage
- measurement of Hubble constant

• Observation of AT2017gfo

• the origin of r-process elements like rare earth elements (Lanthanides), Au, Pt, and U is likely to be binary NS

• Association of GRB170817

• the central engine of (at least a part of) short hard GRB is binary neutron star merger

.

How to drive a short GRB jet ?

- Blandford-Znajek mechanism is a promising mechanism to launch the short GRB jet
- Strong ($\gtrsim 10^{15}$ G) and coherent magnetic fields which thread the BH horizon are necessary to launch an energetic jet **Beckwith et al. 2008** Beckwith et al. 2008
- Poloidal magnetic fields of binary pulsars estimated by the spin-down period : $B_p \sim 10^{8-12}$ G $\ll 10^{15}$ G

Tauris et al. 2017

Key question

How to make such a strong coherent magnetic field from NS magnetic field

.

Generation of coherent magnetic fields

e.g., Moffatt (1978) "Magnetic field generation in electrically conducting fluids"

⇒ small scale turbulent velocity and magnetic fields can generate coherent fields

Kelvin-Helmholtz (KH) instability at the contact shear Magneto-rotational instability (MRI) in the torus

Generation of coherent magnetic fields

e.g., Moffatt (1978) "Magnetic field generation in electrically conducting fluids"

Generation of coherent magnetic fields

e.g., Moffatt (1978) "Magnetic field generation in electrically conducting fluids"

- \checkmark Magnetic field amplification by Kelvin-Helmholtz instability and magneto-rotational instability
- \checkmark Subsequent mean field generation by $\alpha\Omega$ dynamo
- \checkmark Collimated ($\theta_{jet} \approx 12^{\circ}$), Poynting flux dominated jet launched with $L_{Poy} \sim 10^{51}$ erg/s (this is NOT the isotropic-equivalent luminosity)
- \checkmark Mildly neutron-rich $(X_{n,\text{ave}} \sim 0.7)$ ejecta with $M_{\text{ej}} \geq 0.1 M_{\odot}$

GW190425 and Prompt collapse to a BH

Brief summary of GW190425

Abbott et al. 2020

- \checkmark Total mass of BNS : $M_{\text{total}} = 3.3 \text{--} 3.4 M_{\odot}$
	- \Rightarrow expected to collapse promptly to a BH
- \checkmark Poor sky localization due to a single detector event
- \checkmark no electromagnetic counterpart is detected

Previous GRMHD simulation for prompt collapse Ruiz and Shapiro 2017

- \checkmark Poynting flux dominated jet are NOT launched
- \checkmark No evidence for coherent magnetic field formation
- \checkmark (Nearly) equal mass binary \Rightarrow small disk mass $\leq 10^{-3} M_{\rm tot}$
- \checkmark Short-term simulations up to 26 ms after the merger

.

Set-up of simulation

• Einstein's equations :

- \checkmark BSSN formalism (Shibata and Nakamura 1995; Baumgarte and Shapiro 1998)
- \checkmark Moving puncture method (Campanelli et al. 2006; Baker et al. 2006)
- \checkmark Z4c constraint propagation (Hilditch et al. 2013)

• Magnetohydrodynamics: (Kiuchi et al. 2022)

- \checkmark HLLD Rieman solver (Mignone et al. 2009)
- \checkmark Divergence-B constraint transport (Gardiner and Stone 2008)
- \checkmark Magnetic-flux preserving mesh refinement (Balsara 2009)
- Neutrino transfer : (Sekiguchi et al. 2012)
	- \checkmark M1 closure (Shibata et al. 2011)
	- \checkmark Neutrino heating (Fujibayashi et al. 2017)

• Prescription of BNS :

- \checkmark SFHo equation of state (Steiner et al. 2013) : $M_{\rm max} \approx 2.1 M_{\odot}$
- \checkmark 1.25 M_{\odot} -1.65 M_{\odot} unequal mass binary ($M_{\rm tot} = 2.9 M_{\odot}$)
- \checkmark prompt collapse to a BH with $M_{\rm BH} \approx 2.8 M_{\odot}$, $a_{\rm BH} = 0.76 M_{\odot}$
- \checkmark accretion disk with $M_{\text{disk}} \approx 0.06 M_{\odot}$ is formed

• Magnetic field :

- \checkmark poloidal magnetic field is superimposed inside the NSs $A_j = A[(x - x_{NS})\delta_j^y - (y - y_{NS})\delta_j^x] \cdot max(P/P_{max} - 2 \cdot 10^{-4}, 0)^{1/2}$
- \checkmark maximum field strength is ≈ 10¹⁵ G

• Grid set-up and timescale :

- \checkmark 13-level fixed mesh refinement
- \checkmark finest grid resolution : $\Delta x = 150$ m enable to follow the fastest growing mode of magneto-rotational instability

$$
\lambda_{\rm MRI} \sim \frac{v_{\rm Alfven}}{\Omega} \sim \frac{B}{\Omega \sqrt{4\pi\rho}}
$$

 \checkmark Long-term (> 1 sec) simulation

animation by K. Hayashi

Hayashi et al. submitted to PRL

MRI induced viscosity and dynamo

The fastest growing mode is resolved : partially ($t - t_{\text{merger}} \ge 10$ ms), fully ($t - t_{\text{merger}} \ge 100$ ms)

 \checkmark MRI driven turbulence induces effective viscosity and disk mass decays

 \checkmark MRI driven turbulence activates the dynamo cycle and coherent magnetic fields are formed

(Weak) Poynting flux dominated jet is launched

 \checkmark Coherent magnetic fields accrete the BH and further amplified by winding

- \checkmark Note also that Prompt collapse to BH \Rightarrow density and ram pressure in the pole region is smaller
- \checkmark Collimated ($\theta_{jet} \sim 10^{\circ}$), Poynting flux dominated jet launched with $L_{\text{Poy}} \sim 10^{47} \text{ erg/s}$

 \checkmark Jet angle gradually increases as matter pressure, which confines the jet, decreases

✓ Prompt BH formation

- \checkmark mean field generation by MRI-induced dynamo
- \checkmark ram pressure is smaller
- \checkmark L_{Poy} ~ 10⁴⁷ erg/s, $\theta_{\rm jet}$ ~ 10° $\mathcal{M}_{\text{ei}} \lesssim 0.01 M_{\odot}$

\checkmark delayed BH formation

- \checkmark MRI is resolved
- \checkmark ram pressure is stronger than magnetic pressure
- \checkmark Jet is not launched in 1 sec after the merger

- \checkmark Long-lived NS : amplification by KH instability and MRI
- \checkmark mean field generation by $\alpha\Omega$ dynamo
- \checkmark L_{Poy} ~ 10⁵¹ erg/s, $\theta_{\rm jet} \approx 12^{\circ}$ ✓ $M_{ej} \ge 0.1 M_{\odot}$ ($X_{n,\text{ave}} \sim 0.7$)

Kiuchi et al. Nature Astronomy 2024

Hayashi et al. PRL submitted Kiuchi et al. PRL 2023

Technical issues to follow small-scale fields

• High resolution is required

• we adopted $\Delta x_{\text{finest}} = 12.5$ m (previously $\Delta x_{\text{finest}} = 150$ m)to resolve the fastest growing mode of MRI and accurately follow the B-field amplification in KH instability

.

• Less dissipative MHD solver is advantegeous

• we developed less dissipative HLLD solver (Kiuchi, YS+ 2022) in the framework of NR

0.3

 -0.25°

 $\boxed{0.1}$

 10^0 Total Dynamical Post-merger 10^{-1} $\Delta M/M_{\rm eje}$ 10^{-2} 10^{-3} 10^{-4} 0.0 0.1 0.2 0.3 0.4 0.5

 $Y_{\rm e}$ (*t* - $t_{\rm merger} = 1.1 \,\rm s$)

- ejecta properties (chemical composition broadly consistent w
	-
- Absence of jet launch
	- Insufficient coherent B-field ?, too large ram pressure due to shorter simulation time ?

 $Time: 7.52 ms$ -0.3 00 $-0.2 \times^{\circ}$ \sim 50 km 10 -0.1 $\overline{0}$

Result for $1.35-1.35M_{\odot}$ with DD2 EOS

