

Yusuke Suda and Yasushi Fukazawa

All-sky Medium Energy Gamma-ray Observatory eXplorer

Hiroshima University

B01

Wide High-Energy Coverage by "Particles"

Akira's slide from last year

- by gamma rays and neutrinos
- and (3) IceCube (Tsunesada@OMU)
- future multimessenger astrophysics (2030–)

• **Neutral** keV/MeV/GeV/TeV/PeV regions are covered by different techniques and

Res. (1) MeV Gamma (Fukazawa@Hiroshima), (2) CTA LST (Okumura@Nagoya),

• Need to fill the sensitivity gaps and to extend the energy coverages for

AMEGO-X: All-sky MeV satellite

• AMEGO-X (PI: R. Caputo GSFC/NASA) is a proposed MeV mission to study the engines of $\begin{bmatrix} B \\ P \end{bmatrix}$ extreme explosions and extreme accelerators

• Game-changer in high-energy/multimessenger astronomy

Parameter	
Energy Range	25 keV – 1 GeV
Energy Resolution	5% FWHM at 1 MeV, 17% (68% containment half width) at 1
Point Spread Function	4° FWHM at 1 MeV, 3° (68% containment) at 100 Me
Localization Accuracy	transient: 1° (90% CL radius), persistent: 0.6° (90% CL radius)
Effective Area	1200 cm^2 at 100 keV, 500 cm ² at 1 MeV, 400 cm ² at 100
Field of View	2π sr (<10 MeV), 2.5 sr (>10 MeV)

AMEGO-X Instrument

5 scintillator panels

• Key developments for success: a new pixel silicon sensor "AstroPix", event reconstruction

Not selected in NASA MIDEX2021 due to missing key developments

MM conference 2024

AstroPix: Novel Pixel Sensor

HV-CMOS pixel sensor

I.Peric+'07 with modifications

- Lower energy thresholds than strip detectors • Less passive materials in the telescope
- Less power for same channel count

• Lower cost: CMOS processes are mass produced, fewer steps of integration

AstroPix Development

ATLASPix

AstroPix1

 $<1.5 \text{ mW/cm}^{2}$ $500 \times 500 \ \mu m^2$ 500 µm 25 keV–700 keV <10% (FWHM) at 60 keV

→ AMEGO-X, ePIC at EIC

AstroPix Team

PI: R. Caputo (NASA/GSFC) Design: N. Striebig (KIT) GSFC, ANL, KIT, UCSC, Nagoya U, Hiroshima U

AstroPix2

AstroPix3

AstroPix3

- Full reticle chip: 2 x 2 cm². 725 um thick
- Matrix: 35 x 35 pixels
- Pixel pitch: **500 um** (pixel size 300 um to reduce capacitance)
- Power consumption: 4.12 mW/cm²
- Full digital readout capability

Count map

7

AstroPix3 Performance

ToT spectra

- Photopeaks can be seen in 22 -122 keV range
- 92% of the tested pixels show 22 keV peak

 \rightarrow Lower limit of the dynamic range (25 keV) is satisfied

Calibration curves $ToT = aE + b[1 - \exp(-E/c)] + d$ Am-241: 59.5 keV 100 Median: 6.2 80 of pixels 60 Number 40 20 -Randomly chosen pixels **Fitted functions** Median 10 12 16 14 Confidence Interval (68%, 95%) FWHM (keV) 100 120 40 60 80 Energy (keV)

Energy resolution at 60 keV

Suda+24 NIMA

- Energy calibration over the full sensor
 - 90% of the tested pixels are calibrated
- Energy resolution (FWHM) @ 60 keV: 6.2 keV
 - 44% of the calibrated pixels satisfy the requirement

AstroPix3 Performance

Calibrated energy spectra

	Pixel pitch	Thichness	Dynamic range	Energy resolution (FWHM at 60 keV)	Power
Goal	500×500 µm²	500 µm fully depleted	25 keV - 700 keV	< 6 keV	< 1 mW/cm ²
AstroPix3	500×500 µm²	100 µm depletion	22 keV - ~200 keV	6.2 keV	4 mW/cm ²

Yusuke Suda

Depletion depth

AstroPix4

- capacitance \rightarrow Lower noise floor and better energy resolution
- Pixel-by-pixel comparator threshold tune \rightarrow ToT variation to be suppressed
- Individual hit buffer \rightarrow No identification problem with multiple hits in Row/Col
- Improved time stamp structure \rightarrow 3 ns for timing and ToT (design)

Reduced input capacitance by optimizing the routing and minimizing the metal-to-n-well

AstroPix in Space

Quad-chip (AstroPix3 x4)

- AMEGO-X's tracker
- sensors

ComPair-2 - Prototype Telescope

- ComPair-2 (PI: R. Caputo (GSFC/NASA)): AstroPix tracker + CsI calorimeter NASA APRA funded project. Kickoff in Sep. 2023
- - Hiroshima group is involved in the pipeline group
- Instrument integration, environmental testing, and beam test in **2026** \rightarrow Long duration balloon flight

ComPair-2

Summary and Future

FY2023

FY2024

AstroPix1

AstroPix3 Published a paper: Suda+24 NIMA

MM conference 2024