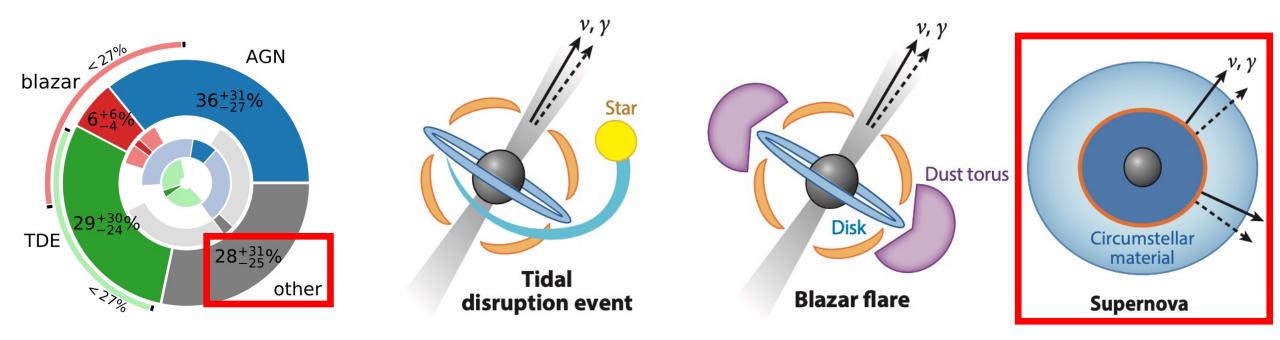

# Multi-Messenger Astronomy in the Near Future with Subaru/PFS

Haibin Zhang (NAOJ) with Nozomu Tominaga, Mitsuru Kokubo, and J-GEM Collaboration, et al.

2024/11/19

## Multi-Messenger Astronomy


- Combining observations of EM radiation (e.g. UV to Radio), gravitational waves, neutrinos, and cosmic rays.
- Potential targets: kilonova, supernova, AGN, tidal disruption events, etc.
- Kilonova: binary neutron-star merger, an origin of heavy elements



GW170817 (Ligo and Virgo 2017)

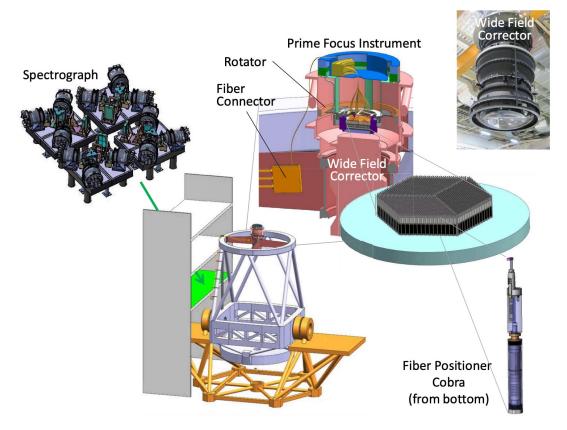
Light curves and spectra of Kilonova AT 2017gfo (Pian et al. 2017; Domoto et al. 2022)

- Another question: missing sources of >TeV neutrino flux detected by IceCube
- Contribution from supernovae (especially Type IIn due to expected dense CSM; e.g. Zirakashvili et al. 2016)?



IceCube pie chart (Bartos et al. 2021)

Schematic picture of various transients (Murase et al. 2019)


Observation →

Data Reduction 
Visual Inspection



#### What is Subaru/PFS?

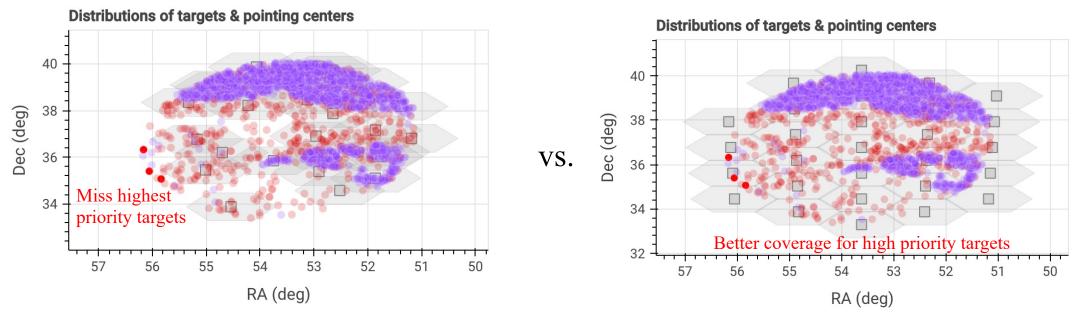
• Prime Focus Spectrograph



| Prime Focus Instrument                  |                                                                           |               |                       |                |  |  |  |  |  |
|-----------------------------------------|---------------------------------------------------------------------------|---------------|-----------------------|----------------|--|--|--|--|--|
| Field of view                           | ~1.38 deg (hexagonal - diameter of circumscribed circle)                  |               |                       |                |  |  |  |  |  |
| Field of view area                      | ~1.25 deg <sup>2</sup>                                                    |               |                       |                |  |  |  |  |  |
| Input F number to fiber                 | 2.8                                                                       |               |                       |                |  |  |  |  |  |
| Fiber core diameter <sup>(1)</sup>      | 127 μm (1.12 arcsec at the FoV center, 1.02 arcsec at the edge)           |               |                       |                |  |  |  |  |  |
| Positioner pitch                        | 8 mm (90.4 arcsec at the FoV center, 82.4 arcsec at the edge)             |               |                       |                |  |  |  |  |  |
| Positioner patrol field                 | 9.5 mm diameter (107.4 arcsec at the FoV center, 97.9 arcsec at the edge) |               |                       |                |  |  |  |  |  |
| Fiber minimum separation <sup>(2)</sup> | ~30 arcsec                                                                |               |                       |                |  |  |  |  |  |
| Fiber configuration time                | ~60-120 sec. [TBC]                                                        |               |                       |                |  |  |  |  |  |
| Number of fibers                        | Science fibers                                                            |               | Fixed fiducial fibers |                |  |  |  |  |  |
|                                         | 2394                                                                      |               | 96                    |                |  |  |  |  |  |
| Fiber density                           | ~2000 deg <sup>-2</sup> / ~0.6 arcmin <sup>-2</sup>                       |               |                       |                |  |  |  |  |  |
| Number of A&G camera <sup>(3)</sup>     | 6                                                                         |               |                       |                |  |  |  |  |  |
| Field of view of A&G camera             | ~5.1 arcmin <sup>2</sup> per one camera                                   |               |                       |                |  |  |  |  |  |
| Sensitivity of A&G camera               | r'~20.0 AB mag for S/N~30 (100) in 1 (10) sec. exposure                   |               |                       |                |  |  |  |  |  |
| Spectrograph                            |                                                                           |               |                       |                |  |  |  |  |  |
| Spectral arms                           | Blue                                                                      | Red           |                       | NIR            |  |  |  |  |  |
|                                         |                                                                           | Low Res.      | Mid. Res.             |                |  |  |  |  |  |
| Spectral coverage                       | 380 - 650 nm                                                              | 630 - 970 nm  | 710 - 885 nm          | 940 - 1260 nm  |  |  |  |  |  |
| Dispersion                              | ~0.7 Å/pix                                                                | ~0.9 Å/pix    | ~0.4 Å/pix            | ~0.8 Å/pix     |  |  |  |  |  |
| Spectral resolution                     | ~2.1 Å                                                                    | ~2.7 Å        | ~1.6 Å                | ~2.4 Å         |  |  |  |  |  |
| Resolving power                         | ~2300                                                                     | ~3000         | ~5000                 | ~4300          |  |  |  |  |  |
| Spectrograph throughput <sup>(4)</sup>  | ~52% (@500nm)                                                             | ~52% (@800nm) | ~47% (@800nm)         | ~35% (@1100nm) |  |  |  |  |  |

PFS parameters (https://pfs.ipmu.jp/)

## Why using Subaru/PFS?


- Large field of view (1.25 deg<sup>2</sup>)
- Wide wavelength coverage (380-1260 nm)
- >2000 objects can be observed simultaneously at one pointing.
- Precut slit masks are not needed (suited for ToO observations)

| Arm   |              | Wavelength  |                           | Resolving<br>Power | Continuum sensitivity <sup>(2)</sup> |                               |
|-------|--------------|-------------|---------------------------|--------------------|--------------------------------------|-------------------------------|
|       |              | range       | Throughput <sup>(1)</sup> |                    | [AB mag]                             |                               |
|       |              | [nm]        |                           |                    | mean <sup>(4)</sup>                  | representative <sup>(5)</sup> |
| Blue  |              | 380 - 450   | 10%                       | ~2500              | 21.8                                 | 21.9 (@415nm)                 |
|       |              | 450 - 550   | 18%                       |                    | 22.3                                 | 22.3 (@505nm)                 |
|       |              | 550 - 650   | 21%                       |                    | 22.1                                 | 22.2 (@605nm)                 |
| Red A | Low          | 630 - 750   | 27%                       | ~3000              | 22.3                                 | 22.5 (@680nm)                 |
|       | Low<br>Res.  | 750 - 850   | 26%                       |                    | 22.1                                 | 22.4 (@796nm)                 |
|       |              | 850 - 970   | 23%                       |                    | 21.7                                 | 22.1 (@912nm)                 |
|       | Mid.<br>Res. | 710 - 775   | 25%                       | ~5500              | 21.7                                 | 21.9 (@741nm)                 |
|       |              | 775 - 825   | 24%                       |                    | 21.6                                 | 21.9 (@796nm)                 |
|       |              | 825 - 885   | 22%                       |                    | 21.5                                 | 21.8 (@856nm)                 |
|       |              | 940 - 1050  | 21%                       | ~4500              | 21.2                                 | 21.8 (@993nm)                 |
| NIR   | 1050 - 1150  | 19%         | 21.1                      |                    | 21.5 (@1100nm)                       |                               |
|       |              | 1150 - 1260 | 14%                       |                    | 20.8                                 | 21.2 (@1208nm)                |

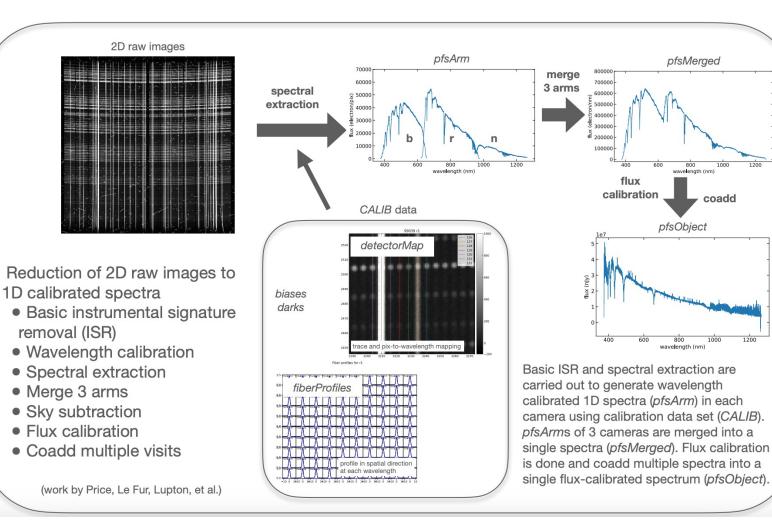
 $5\sigma$ , one hour exposure, 3 pixel binning

### **Target Preparation**

- Host galaxies: spec-z and photo-z catalogs (e.g. GLADE+ and PS1-STRM)
- Transients: identified by other imaging instruments.
- PFS Target Uploader: use hexagonal pointing instead of default pointing
- Half-night observation: cover ~20 deg<sup>2</sup> with >18 mag (5 $\sigma$  per pixel)



Default pointing


Hexagonal pointing

(S240919bn; 90% area = 21 deg^2; 28 PFS pointings)

Data Reduction

Visual Inspection

### **PFS** Pipeline



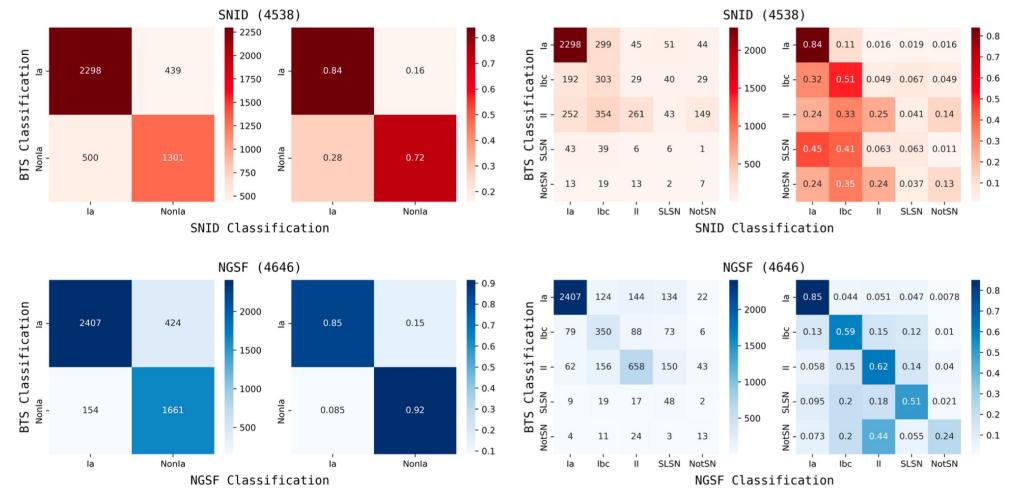
• PFS products we will use:

2D pipeline: psfSingle (fluxcalibrated spectra of each single exposure)

1D pipeline: spec-z catalog of host galaxies

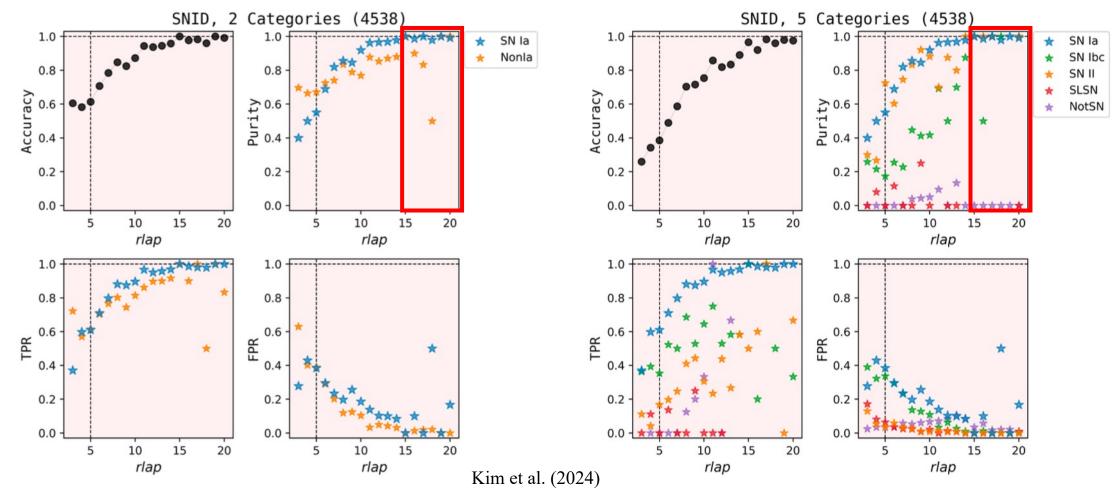
- We have successfully installed and tested the 2D pipeline with mock data.
- The 1D pipeline is being improved by the pipeline team.

2D pipeline (Kiyoto Yabe PFS DRP development team)


Observation →

Data Reduction 
Visual Inspection

Report

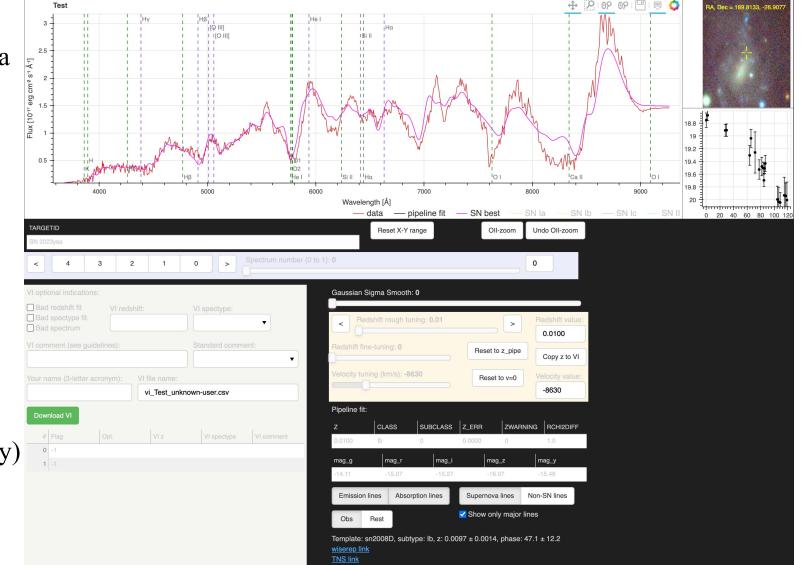

#### Supernova Identification Tools

• Current tools are only accurate for SN Ia. Visual inspection is required.



Kim et al. (2024), consistent with our tests

- But can be used to remove SN Ia with high purity (~ 99%).
- For example, either of
  - 1. SNID rlap > 15 (rlap = goodness of fit; Kim et al. 2024)
  - 2. SNID rlap > 5, known spec-z, and Mag < -17.5 (our tests)




# Visual Inspection Tool

Have been tested with PFS EDR data and SN spectra in the literature.

Current functions:

- Show observed/model spectra
- Adjust redshift and velocity
- SNID fitting results
- Images and light curves
- Show/hide emission/absorption lines
- Show/hide SN/galaxy lines
- Other information (e.g. photometry)
- Save VI results



Observation  $\implies$  Data Reduction  $\implies$ 

• We will share the reduced PFS data and information (SN type, spec-z, etc.) among the J-GEM collaboration as soon as possible (maybe using the Image Server).

SN Identification

Report

- We will submit a discovery report to the <u>Astronomer's Telegram</u> and <u>General</u> <u>Coordinates Network (GCN)</u> if there is an important discovery (e.g. kilonova).
- We will complete and submit a paper ASAP (hopefully within two weeks) after an important discovery.

#### Summary

- We will carry out Subaru/PFS observations for multi-messenger astronomy in the near future.
- Our targets will be transients (Kilonova, SN, etc.) and their host-galaxies.
- We have prepared tools for target selection, data reduction, and visual inspection.
- We are ready for the PFS science operation scheduled from 2025.