Credits: NASA, ESA, CSA

Recent Extragalactic Observations at Very High Energies by LST-1

Abhradeep Roy

On behalf of: CTAO-LST Collaboration

Outline

The Large Sized Telescope-1

2

The Large Sized Telescope-1

Differential Sensitivity [% C.U.] 01 20

10-

2

Mrk 421 (z = 0.031)

- → Observation time: 31.9 hrs (2020 to 2022)
- → Detection significance: 53σ
- → Flare on 2022-05-18 (~3 crabs at >100 GeV)

- → Bayesian blocks to identify states of activity
- → Fast variability observed during flare.
- → Rise time: ~10 min, Fall time: ~26 min
- → Compact emission region: $0.2 3 \times 10^{15}$ cm

Mrk 421 (z = 0.031)

- → Observation time: 31.9 hrs (2020 to 2022)
- → Detection significance: 53σ
- → Flare on 2022-05-18 (~3 crabs at >100 GeV)

- → Bayesian blocks to identify states of activity
- → Fast variability observed during flare.
- → Rise time: ~10 min, Fall time: ~26 min
- → Compact emission region: $0.2 3 \times 10^{15}$ cm

Credit: Ryuji Takeishi

Mrk 501 (z = 0.034)

- → Observation time: 39.7 hrs (2020 to 2022)
- → Detection significance: 21σ

Observed Blazars

Mrk 501 (z = 0.034)

- → Observation time: 39.7 hrs (2020 to 2022)
- → Detection significance: 21σ

1ES 1959+650 (z = 0.048)

- → Observation time: 11.8 hrs (2020 to 2022)
- → Detection significance: 13σ

1ES 0647+250 (z = 0.45)

- → Observation time: 8.2 hrs (2020 to 2022)
- → Detection significance: 7σ
- → Joint Fermi-LAT + LST1 fit performed

1ES 0647+250 (z = 0.45)

- → Observation time: 8.2 hrs (2020 to 2022)
- → Detection significance: 7σ
- → Joint Fermi-LAT + LST1 fit performed

PG 1553+113 (z = 0.433)

- → Observation time: 9.9 hrs (2020 to 2022)
- → Detection significance: 16σ
- → Joint Fermi-LAT + LST1 fit performed

OP 313 (z = 0.997)

- → The most distant quasar detected in VHE by LST1 (<u>ATel #16381</u>).
- → Only 10th FSRQ in VHE.
- → Observation time: 15 hrs (During flare in December 2023)
- → Detection significance: 13σ
- → Flux = 0.28 Crabs (>100 GeV)
- → Multiple ongoing projects: variability, EBL, MWL etc.

First detection of VHE gamma-ray emission from FSRQ OP 313 with LST-1

ATel #16381; Juan Cortina (CIEMAT) for the CTAO LST collaboration

on **15 Dec 2023; 14:31 UT** Credential Certification: Juan Cortina (Juan.Cortina@ciemat.es)

Subjects: Gamma Ray, >GeV, TeV, VHE, Request for Observations, AGN, Blazar, Quasar

1ES 1218+304 (z = 0.182)

- → High-energy peaked BL Lac TeV discovery by MAGIC on 2006-05 (<u>Albert et al. 2006</u>)
- → VHE variability observed by VERITAS (<u>Acciari et al. 2010</u>)
- → Observed spectral index ~3.0 (MAGIC and VERITAS)

1ES 1218+304 (z = 0.182)

- → High-energy peaked BL Lac TeV discovery by MAGIC on 2006-05 (<u>Albert et al. 2006</u>)
- → VHE variability observed by VERITAS (<u>Acciari et al. 2010</u>)
- → Observed spectral index ~3.0 (MAGIC and VERITAS)

LST-1 Observation

- → Period: 2023-02-28 to 2023-04-12
- → Duration: 18 hours 40% in moonlight (Rejected by standard cuts!)
- → Tools: lstchain-v0.10.11 (DL1 to DL3) \rightarrow gammapy-1.1 (post DL3)

1ES 1218+304 (z = 0.182)

- → High-energy peaked BL Lac TeV discovery by MAGIC on 2006-05 (<u>Albert et al. 2006</u>)
- → VHE variability observed by VERITAS (<u>Acciari et al. 2010</u>)
- → Observed spectral index ~3.0 (MAGIC and VERITAS)

LST-1 Observation

- → Period: 2023-02-28 to 2023-04-12
- → Duration: 18 hours 40% in moonlight (Rejected by standard cuts!)
- → Tools: lstchain-v0.10.11 (DL1 to DL3) \rightarrow gammapy-1.1 (post DL3)

Theta² distribution of Runs 12108:12382 with 3 wobbles and cut at 0.04, for total time 4.39 hr

Source Detection:

- → Selected duration by quality cuts: 4.4h
- → Energy-dependent dynamic gammaness cut with 70% efficiency.
- → Detection with 5.8 σ significance.

Observed Blazars 1ES 1218+304 (z = 0.182)

8

1ES 1218+304 (z = 0.182)

- → Quasi-simultaneous Swift-UVOT, Swift-XRT and Fermi-LAT data.
- → Leptonic Synchrotron Self-Compton model with a spherical emission zone.
- → $t_{var} \lesssim 1 \text{ day } [Sato et al. 2008, Acciari et al. 2010].$
- → Log-parabolic particle energy distribution:

$$f(\gamma) = (\gamma/\gamma_0)^{-(s+r\log(\gamma/\gamma_0))}$$

- → Fixed parameters: $R = 2.5 \times 10^{16} \text{ cm}; \delta = 20$
- → EBL absorption: <u>Franceschini et al. 2008</u>

SED model parameters:

Particle density, N =	12.7 ± 1.9 cm ⁻³
Magnetic field, B =	0.09 ± 0.01 G
Index, s =	= 2.17 ± 0.04
Curvature parameter, r =	= 0.13 ± 0.02
Minimum Lorentz factor, γ_{min}	= 44 ± 7
Maximum Lorentz factor, γ_{max}	$= (9 \pm 1) \times 10^5$
Reference Lorentz factor, γ_0^{max}	$= (1.0 \pm 0.1) \times 10^4$

1ES 1218+304 (z = 0.182)

- → Quasi-simultaneous Swift-UVOT, Swift-XRT and Fermi-LAT data.
- → Leptonic Synchrotron Self-Compton model with a spherical emission zone.
- → $t_{var} \lesssim 1 \text{ day } [Sato et al. 2008, Acciari et al. 2010].$
- → Log-parabolic particle energy distribution:

$$f(\gamma) = (\gamma/\gamma_0)^{-(s+r\log(\gamma/\gamma_0))}$$

- → Fixed parameters: $R = 2.5 \times 10^{16} \text{ cm}; \overline{\delta} = 20$
- → EBL absorption: <u>Franceschini et al. 2008</u>

1ES 1959+650 (z = 0.048)

- → LST1 observations since May, 2022.
- → Standard data quality cut: 5.63 hrs.
- → Detection significance 13σ .
- → Similar flux level as 2020 2022 period.

1ES 1959+650 (z = 0.048)

- → LST1 observations since May, 2022.
- → Standard data quality cut: 5.63 hrs.
- → Detection significance 13σ .
- → Similar flux level as 2020 2022 period (~40% Crab).
- → Hint of intraday variability.
- → Shortest flux doubling timescale, t_{var} = 26 min
- → Assuming $\delta = 10 50$, emission region size, R \leq (0.4 - 2) × 10¹⁵ cm.
- → Time-resolved broadband SED might be interesting.

Summary

- → Spectral variability study of well-known AGN with LST1 data in 2020 2022.
- → Good agreement between simultaneous Fermi-LAT and LST-1 spectrum.
- → Sensitive to variable gamma-ray sources above 25 GeV for low zenith observations.
- \rightarrow Detection of OP 313, the highest redshift (z = 0.997) FSRQ till date.
 - Several projects on OP 313 are ongoing.
- → Detection of 1ES 1218+304 with 4.4 hours of LST1 observation
 - Comparable VHE spectral index
 - Multiwavelength SED modelling
 - Diffusive shock acceleration is viable
- → Ongoing projects:
 - BL Lac: LST-1 observation of flares in 2020, 2021 and 2022.
 - OP 313: VHE flux variability, MWL SED, BLR study, EBL constraints
- → My involvements:
 - MAGIC + LST1 joint observations of 1ES 1218+304
 - Multiwavelength study of 1ES 1959+650
 - LST-1 flare advocate in 2024 October-November season.

Summary

- → Spectral variability study of well-known AGN with LST1 data in 2020 2022.
- → Good agreement between simultaneous Fermi-LAT and LST-1 spectrum.
- → Sensitive to variable gamma-ray sources above 25 GeV for low zenith observations.
- \rightarrow Detection of OP 313, the highest redshift (z = 0.997) FSRQ till date.
 - Several projects on OP 313 are ongoing.
- → Detection of 1ES 1218+304 with 4.4 hours of LST1 observation
 - Comparable VHE spectral index
 - Multiwavelength SED modelling
 - Diffusive shock acceleration is viable
- → Ongoing projects:
 - BL Lac: LST-1 observation of flares in 2020, 2021 and 2022.
 - OP 313: VHE flux variability, MWL SED, BLR study, EBL constraints
- → My involvements:
 - MAGIC + LST1 joint observations of 1ES 1218+304
 - Multiwavelength study of 1ES 1959+650
 - LST-1 flare advocate in 2024 October-November season.

