Pulsar Timing Array

Keitaro Takahashi Kumamoto University 2024/11/18

pulsar timing array

PTA in a nutshell

- \cdot direct detection of GWs
- very stable msec pulsars
- \cdot precise timing for O(10) years
- GWs affect pulse arrival time O(100) nsec
- · GW freqency
 - \rightarrow observation period and cadence
 - \rightarrow (1 week)⁻¹ ~ (10 years)⁻¹
 - \rightarrow 1 μ Hz ~ 1 nHz

multi-wavelength GW astronomy

Nano-Hz GWs

- \cdot SMBH binary
- \cdot cosmic string
- \cdot inflation
- \cdot phase transition
- 2nd-order scalar fluctuations

Indian PTA

- India + Japan
- uGMRT (SKA pathfinder)
- low frequency (250-1450MHz)
 - uniqueness of InPTA
 - precise dispersion measure
- 2nd data release in 2024

worldwide announcement

6/29 UTC 0:00 : press release

- EPTA + InPTA, NANOGrav, PPTA, CPTA
- GW background signal : 2~4 $\sigma \rightarrow$ evidence (detection)
- consistent with that from SMBH binaries
- cannot reject other sources

to improve

- understand systematics better
 - monopole in inter-pulsar correlation?
 - pulse jitter : pulsar intrinsic fluctuations
 - RFI, solar system ephemeris
- longer time baseline
 - just continue observations
- more pulsars
 - combine different PTAs
 - more sensitive telescope

from detection to astronomy

Zhu+ 2015

- angular resolution of GW source \rightarrow > O(10) deg²
 - \rightarrow GW source cannot be identified

Kato & KT (2023)

- precise pulsar distance from VLBI (< GW wavelength)
- GW angular resolution improves by a few orders
- will do VLBI observation of pulsars

GW source (\Box) most likelihood (\bigcirc) pulsar (\Leftrightarrow)

Nano-Hz GW astronomy

 $\begin{array}{l} \mathsf{D} = 85 \ \text{Mpc} \\ \mathsf{M}_1 = 3.2 \times 10^9 \ \text{M}_{\text{sun}} \\ \mathsf{M}_2 = 5.1 \times 10^7 \ \text{M}_{\text{sun}} \\ \mathsf{a} = 0.35 \ \text{pc}, \ \mathsf{e} = 0.14 \end{array}$

 $D = 156 \text{ Mpc} \\ M_1 = 9.2 \times 10^9 \text{ M}_{sun} \\ M_2 = 7.5 \times 10^9 \text{ M}_{sun} \\ a = 1.3 \text{ pc, } e = 0.25$

 $\begin{array}{l} D = 245 \ \text{Mpc} \\ M_1 = 4.3 \times 10^9 \ \text{M}_{\text{sun}} \\ M_2 = 5.9 \times 10^8 \ \text{M}_{\text{sun}} \\ a = 0.12 \ \text{pc}, \ e = 0.02 \end{array}$

Square Kilometre Array

<u>SKA PTA</u>

SKA1 survey

• 9,000 normal pulsars

3

×10!

• 1,400 msec pulsars

SKA2 survey

- · 30,000 normal pulsars
- 3,000 msec pulsars

SKA-PTA much more msec pulsars & much higher sensitivity

SKA1-PTA sensitivity


```
future prospects
2023 IPTA comparison : arXiv
2024 IPTA combination : ongoing
                            GWB detection
  MeerKAT, FAST join
                                                   single source
                            GWB power spectrum
                            \rightarrow SMBH evolution model
2029 SKA1
                            precise GWB power spectrum
                            \rightarrow other sources
203? SKA2
                            GWB anisotropy
                                             SMBH binary catalog
```

<u>summary</u>

- pulsar timing array
 - \rightarrow direct detection of nano-Hz GWs with msec pulsars
- evidence for GW background
 - statistical significance of HD correlation : $2 \sim 4 \sigma$
 - consistent with GW background from SMBH binaries
 - cannot reject other sources due to low S/N
- future prospects
 - IPTA data combination, SKA1, SKA2
 - nHz GW astronomy
- happy to collaborate on SMBHs, cosmic strings, early universe, GW data analysis