Direct measurement of coating thermal noise toward multi-wavelength gravitational-wave observation

Kentaro Komori

Research center for the Early Universe, the University of Tokyo

The second annual conference of Transformative Research Areas (A), "Multimessenger Astrophysics" November 19th, 2024

GW observation and multimessenger

➤Growing population but only two binary neutron star merger events

Next-generation GW-detectors

- ≻GW detector network will enter the multi-wavelength era
- ➢In 2030s, detector sensitivities will be improved by an order of magnitude
 - Cosmic Explorer in US (40 km) and Einstein Telescope (10 km) in Europe

Motivation

➢It is highly likely due to coating thermal noise of mirrors, worse than expected

Coating thermal noise

- ➢Brownian motion of the coating layers
 - Calculated by fluctuation dissipation theorem (FDT)
 - The coating fluctuation cannot be distinguished from the mirror motion caused by GW signals
 - Fundamental sensitivity limit of current and future GW detectors

≻Coating materials

- Current: dielectric multilayer film (SiO₂/Ta₂O₅)
- Potential candidate in future: crystalline coating (AlGaAs)
- ≻Issues
 - Only one setup for direct measurement of the coating thermal noise
 - No works in cryogenic temperature (for KAGRA, CE and ET)

Thorlab

Our experiment

- ≻Goals
 - Measurement of the coating thermal noise for some candidates
 - Giving implications which coating we should use in future detectors

Current status

➢Finished making separate components

≻Integrating them now

≻Future

- Completing the whole setup construction
- Measurement of AlGaAs coating thermal noise in room temperature
- Measurement of SiO_2/Ta_2O_5 and AlGaAs in cryogenic temperature

Summary

The BBH population is drastically increasing, but we need more BNS and multimessenger events

➤Coating thermal noise will be one of fundamental issues for current and future GW detectors

> We aim at direct measurement of the coating thermal noise

Construction of the setup in room temperature almost completed