B02: HiZ-GUNDAM

Development & Current Status of the Wide-Field X-ray Monitor onboard HiZ-GUNDAM

Wide-Field X-ray Monitor

HIZ-GUNDAM

Makoto ARIMOTO (Kanazawa University) on behalf of the HiZ-GUNDAM Collaboration

HiZ-GUNDAM: High-z Gamma-ray bursts for Unraveling the Dark Ages Mission

- Launch: Early 2030s
- Key sciences via GRBs
 - \checkmark exploring early universe at z > 7
 - ✓ finding electromagnetic counterparts of GW events
 - Required spec.: ✓ Wide field of view ✓ Moderate sensitivity

Wide-Field X-ray Monitor (WFXM)

Focal X-ray imager

ltems	Parameters
Energy range	0.4 – 4 keV
Field of view	0.6 str for 16 units (3 arcmin accuracy)
Time resolution	< 0.1 s
Focal imager	Total area: 55 x 55 mm², pixel size: ~70-100 um

55 mm

PN-junction type CCD: pnCCD

55 mm

Discovery space of WFXM

Einstein Probe (Launched in 2024 Jan.)

Einstein Probe

Development items

Lobster-eye optics Localize X-ray photons within ~3 arcmin

- LEO alignment
- Performance evaluation

Electron diverter Reject electron events as false detections

Focal X-ray pixel sensor pnCCD Detect X-ray photons over a large area quickly

- Driver and readout electronics
- A large-area pnCCD
- Evaluation of the radiation tolerance
- Design of the radiator cooling system
- etc.

Development items

Lobster-eye optics Localize X-ray photons within ~3 arcmin

- LEO alignment
- Performance evaluation

Electron diverter Reject electron events as false detections

Focal X-ray pixel sensor pnCCD Detect X-ray photons over a large area quickly

- Driver and readout electronics
- A large-area pnCCD
- Evaluation of the radiation tolerance
- Design of the radiator cooling system
- etc.

Development items

Lobster-eye optics Localize X-ray photons within ~3 arcmin

- LEO alignment
- Performance evaluation

Electron diverter Reject electron events as false detections

Focal X-ray pixel sensor pnCCD

Detect X-ray photons over a large area quickly

- Driver and readout electronics
 - A large-area pnCCD
 - Evaluation of the radiation tolerance
- Design of the radiator cooling system
- etc.

Lobster-eye optics (LEO)

2 piece of LEO with Ti frame

700

200 300 400 500 600

100

H. Goto (D2)

(now in France)

Lobster-eye optics (2)

 ✓ Measurements in the 30 m X-ray beamline of ISAS/JAXA (Photons' parallelism is < 1 arcmin)

pnCCD and its readout system

Our system is almost ready for pnCCD operation !

✓ Thickness: 500 um✓ Pixel size: 132 um

R. Kondo

K. Sei

H. Otsuka

13

pnCCD radiation tolerance tests

✓ Radiation damage can degrade the X-ray detection capability

S. Takahashi H. Goto (graduated)

S. Takahashi, MA et al., NIM-A 169413 (2024)

pnCCD with an expanded area

BreadBoard Model (BBM) (much SMALLER than the flight model !)

 $\checkmark\,$ Designing the cooling system in progress

Summary

Development of WFXM is in progress

- Lobster-eye optics (LEO)
 - ✓ LEO alignment
 - \checkmark Performance evaluation

Electron diverter

 \checkmark Development of the simulator

Focal X-ray pixel sensor pnCCD

✓ Driver and readout electronics
✓ Evaluation of the radiation tolerance
✓ A pnCCD with an expanded area
✓ Design of the radiator cooling system
✓ etc.

Schedule

- Downselection review in ~2 years
- Our developments are key for the review
- Many reviews are waiting

