^{B02} Progress of development of pnCCD image sensor onboard the next generation GRBs observation satellite mission HiZ-GUNDAM

Multi-messenger Astrophysics 2nd annual conference Nov. 19, 2024 Kanazawa University

Graduate School of Natural Science and Technology Division of Mathematical and Physical Sciences <u>Ryuji Kondo</u>

S. Takahashi et al., NIM-A, 2024, Volume 1064, pages 169413

Shuta Takahashi¹, Makoto Arimoto¹, Hatsune Goto¹, Daisuke Yonetoku¹, Robert Hartmann², Lothar Strüder², Peter Holl², Naoki Ogino¹, Tatsuya Sawano¹, Junko Hiraga³, Masataka Sato³, Takanori Sakamoto⁴, Hsien-Chieh Shen⁴, Satoshi Hatori⁵, Ryoya Ishigami⁵, Akihiro Doi⁶, Hideo Matsuhara⁶ ¹Kanazawa Univ., ²PNSensor, ³Kwansei Gakuin Univ., ⁴Aoyama Gakuin Univ., ⁵WERC, ⁶JAXA

pnCCD Image Sensor

pnCCD image sensor

pnCCD system manufactured by **PNsensor GmbH**

- **Multi-Channel Readout**
- High frame rate • (up to 1000 frames/second !)

Achievements of pnCCD in Spacecrafts

SPC/ODOCITA/Commonul

http://sci.esa.int/xmm-newton/18015-

xmm-newton-spacecraft/

SVOM/MXT(France)

- *HiZ-GUNDAM* is M-class mission(~500 kg)
- Costly mechanical chillers cannot be installed.
- The system will be operated at about -30 °C with passive cooling only due to the strict power requirements.

Temperatures are higher than the thermal environment of pnCCDs in previous spacecraft.
→ We need to investigate the effects of radiation on pnCCDs.

https://ep.bao.ac.cn/ep/cms/files/W020210609570525377403.png

Radiation and its effects on *HiZ-GUNDAM* in orbit

sun synchronous dawn-dusk orbit(altitude: 500 – 600 km, 98.1°) mission term: 3 – 5 years

102

101

We must test radiation tolerance to various irradiation doses.

Purpose

To quantify the change in soft X-ray detection performance of pnCCDs in response to changes in irradiation dose.

During the *HiZ-GUNDAM* mission, can the pnCCD operate with the **lower detectable energy=0.4 keV** requirement?

 \rightarrow Investigate in the parameter space of frame rate and temperature.

pnCCD operating range **before irradiation**

Items	Parameter
lower detectable energy	0.1 keV
frame rate	any
temperature	any

pnCCD operating range after irradiation

Items	Parameter
lower detectable energy	\leq 0.4 keV
frame rate	≥ ??? frame/s
temperature	≤ ??? ℃
	6/13

Detector used in this study

 The focal plane detector of FM requires 55 mm × 55 mm sensitive area, but a small pnCCD image sensor was used for this study to test radiation tolerance.

Item	small-pnCCD
sensitive area	9.6 × 19.2 mm ²
pixel size	75 um
pixel number	128 × 256
depletion thickness	450 um

Radiation Tolerance Test

@ Wakasa-wan Energy Research Center (WERC) The exposure received in orbit was represented by 10 MeV proton beams.

The pnCCD is divided into four irradiated areas, each of which is irradiated with a different number of protons.

pnCCD with separate irradiation area (number of years in orbit in the WORST case corresponding to the irradiation dose \rightarrow Actual deterioration could be much less.)

assembling the experimental setup 8/13

Image data after irradiation

frame rate: 33 frames/second temperature: -20℃,-35℃,-50℃,-70℃,-90℃

Dark Noise and Lower Detectable Energy **Dark Noise** Lower Detectable Energy 70 .90 ℃ 1750 ് 70 -ower detectable energy (eV) 60 50 °C 35 ℃ 1500 20 °C 50 Dark noise [e-] 1250 0.4 keV -90 °C 40 1000 -70 °C -50 °C 30 -35 °C 750 -20 °C 20 500 250 10 0 0 2 2 3 4 3 Number of irradiated protons $[\times 10^9 \text{ proton cm}^{-2}]$ Number of irradiated protons [×10⁹ proton cm⁻²] identical Frame rate: 33 Hz A correlation can be plotted between dark noise and lower detectable energy. 10/13

Dark noise v.s. Lower Detectable Energy

Assume the target value for dark noise is 18 e-, (Dark noise) $\propto t_{exposure}$ $\propto (frame rate)^{-1}$ Using this relationship, we searched for an acceptable parameter space for temperature and frame rate.

Summary and Future

Summary

- In this study, radiation tolerance tests were conducted on pnCCDs equipped with *HiZ-GUNDAM*.
- For four different exposures and arbitrary temperatures (-90°C to -20°C), the range of frame rates over which a pnCCD can operate with lower detectable energy = 0.4 keV requirement was investigated.
- The results show that HiZ-GUNDAM can operate with lower detectable energy = 0.4 keV for the mission duration.

Future

Starting with thermal design and electrical system considerations, operating temperatures and frame rates will be discussed.

S. Takahashi et al., NIM-A, 2024, Volume 1064, pages 169413

APPENDIX

14

Achievements of pnCCD in Spacecrafts

SRG/eROSITA(Germany)

https://heasarc.gsfc.nasa.gov/docs/srg/erosita/inc/erosita_banner.png
XMM-Newton(Europe)

SVOM/MXT(France)

https://www.svom.eu/wpcontent/uploads/2021/06/4922_5-1024x926.jpg

4ページ目の

隠れている部分

15/13

http://sci.esa.int/xmm-newton/18015xmm-newton-spacecraft/

Einstein Probe/FXT(China)

https://ep.bao.ac.cn/ep/cms/files/W020210609570525377403.png

Dark noise v.s. Lower Detectable Energy

5σにした理由

<u>X線バックグラウンドレート</u>

 HiZ-GUNDAMでは宇宙X線背景放射によるバックグラウンドレートは 露光時間を0.1s で

0.355 counts/frame

<u>ノイズ誤検知</u>

 5σの有意度で信号を検出する場合、ノイズ成分を信号として誤検出する 確率が、

 3×10^{-5} event/s $\times 700^2$ pixels/frame $\times 0.1$ s $\simeq 0.1$ event/frame

ノイズの誤検知率がバックグラウンドレートと同等以下となるため 5σを採用している。

17/13

■ モデル関数の導出

<u>33 Hzでのダークノイズとフレームレートの関係</u>

(Dark noise_@33 Hz) \propto (Frame rate = 33 Hz)⁻¹

<u>400 eVを満足するダークノイズとフレームレートの関係</u> (Dark noise_@400 eV) \propto (Frame rate_@400 eV)⁻¹

(Frame rate_@400 eV) \propto (Dark noise_@33 Hz) $\propto T^{\frac{3}{2}} \exp\left(-\frac{Eg}{2k_BT}\right)$

18/13

10 MeV陽子線を選んだ理由

19/13

一般的なCCDとpnCCDの違い

温度 v.s. フレームレート@4.3 × 10⁸ p/cm²(1-2年分)

