Progress of theoretical modeling on high-energy neutrino emission

ΟΗΟΚυ

UNIVERSITY

C01: Theoretical study on multimessenger signals from neutrino-emitting astrophysical objects

Shigeo S. Kimura (木村成生) Tohoku University

Annual Conference on Multi-messenger Astrophysics 2024/11/18 - 2024/11/20

High-energy Neutrino Astrophysics

• Smoking-gun for hadronic cosmic rays

• Unique probe inside dense medium

Astrophysical Neutrino Observations

IceCube 2013 PRL

- IceCube has been detecting astrophysical neutrinos
- Arrival direction: consistent with isotropic -> cosmic HE neutrino background • Soft spectrum: $F_{E_{\nu}}$ @ TeV > $F_{E_{\nu}}$ @ PeV
- Origin of cosmic neutrinos are a new big mystery

IceCat-1 2023

Recent Progresses in Neutrino/y-ray Observations

Main-stream Model Assumptions

 One-zone approximation - Ignore spacial structure for simplicity

• Single power-law proton distribution with index $s \sim 2$ - Ignore cosmic-ray acceleration process for simplicity

$$E^2 \frac{dN}{dE} \propto E^{2-s}$$

Our strategy: beyond one-zone & single power-law

- One-zone approximation - Ignore spacial structure for simplicity
- Multi-emission regions
 - Multi-zone modeling
 - 1D hydro-simulations + neutrino emission calculation • 3D hydro-simulations + neutrino emission calculation
- Single power-law proton distribution with index $s \sim 2$ - Ignore cosmic-ray acceleration process for simplicity
 - Considering cosmic-ray acceleration & diffusion
 - Semi-analytic treatment
 - MHD + test particle simulations
 - MHD + transport equations

Our strategy: beyond one-zone & single power-law

- One-zone approximation - Ignore spacial structure for simplicity
 - Multi-emission regions • Multi-zone modeling
- Single power-law proton distribution with index $s \sim 2$ - Ignore cosmic-ray acceleration process for simplicity
 - Semi-analytic treatment

• 1D hydro-simulations + neutrino emission calculation • 3D hydro-simulations + neutrino emission calculation

• Considering cosmic-ray acceleration & diffusion

• MHD + test particle simulations

• MHD + transport equations

• Developed for M87 radio galaxy

Neutrino & y-rays from Micro-quasars

• Our model can explain multi-wavelength data for MAXI J1820 & Cyg X-1

• Micro-quasars could potentially

Neutrino & y-rays from Isolated black holes

- ~ 10^{8-10⁹} isolated black holes in our Galaxy SSK, Tomida, Kobayashi, Kin, Zhang in prep.
- Some of them are in molecular clouds = high accretion rate = PeV CR acceleration = Neutrino & γ production by interaction with molecular gas

• IBHs can emit GeV–TeV γ from their magnetosphere Poster by Kin-san

Our strategy: beyond one-zone & single power-law

- One-zone approximation - Ignore spacial structure for simplicity
 - Multi-emission regions • Multi-zone modeling • 1D hydro-simulations + neutrino emission calculation • 3D hydro-simulations + neutrino emission calculation
- Single power-law proton distribution with index $s \sim 2$ - Ignore cosmic-ray acceleration process for simplicity
 - Considering cosmic-ray acceleration & diffusion • Semi-analytic treatment
 - MHD + test particle simulations
 - MHD + transport equations

11

MHD + Test particles

• MHD: turbulence field in large scales

10⁻²

MHD + Test particles

- MHD: turbulence field in large scales
- Particles: orbits & energy evolution

10⁻²

Particle Acceleration Simulations & CR transports in MHD simulation data

- MHD Simulation + Test Particle Simulation - Solve orbits of CR particles using MHD data sets
 - Enable us to obtain diffusion coefficients
 - limited to CRs with $r_L > \Delta x$

Model for diffusion coefficient

- MHD Simulation + CR Transport simulation - Solve CR transport equation using MHD data sets
 - We need a model for diffusion coefficients
 - We can obtain useful info for CRs with $r_L < \Delta x$

Talk by Ishizaki-san; Poster by Kawashima-san

SSK et al. 2016, 2019, in prep

MHD + Test particles

- MHD: turbulence field in large scales
- Particles: orbits & energy evolution => Diffusion coefficients in

Summary

- High-energy Neutrinos are unique signals to probe hadronic cosmic rays & dense medium
- Our strategy: beyond one-zone & single power-law
- We are constructing neutrino emission models

Steady Sources

- Seyfert Galaxies (Radio-quiet AGN) Talk by Murase-san; Poster by Sakai-san
- Low–luminosity AGN

Poster by Kawashima-san

• Galactic Black Hole

This talk; Poster by Kin-san

• Pulsar Wind Nebulae (PWN)

Talk by S. Tanaka-san

• Galactic Wind

Talk by Shimoda-san

nique signals s & dense medium one & single power-law emission models

- Pulsar-powered Supernovae Talk by Ekanger-san
- Interaction-powered Supernovae Talks by Moriya-san & Ekanger-san
- Afterglows of Gamma-ray Bursts Posters by Obayashi-san, Kusafuka-san
- Internal dissipation of GRBs Talk by Nakama-san; Posters by Matsui-san, Wada-san
- Tidal Disruption Events

Talk by Murase-san

