Population Analysis of Binary Black Holes Estimated with Uniform Effective Spin Prior

Kazuya Kobayashi ¹(<u>kazuya@icrr.u-tokyo.ac.jp</u>), Masaki Iwaya¹, Soichiro Morisaki¹, Tomoya Kinugawa², Kenta Hotokezaka³ ICRR University of Tokyo¹, Faculty of Engineering Shinshu University², **RESCEU University of Tokyo³**

Background

Compact binary merger generates **Gravitational Waves(GWs).**

Information of source can be extracted from GWs. e.g., masses, spins, distance etc.

-Method

LIGO Hanford LIGO Livingston

Virgo

KAGRA

~90 compact binary mergers were observed up to O3, and over 200 events have been detected in total so far.

[2] Barak Zackay et al. PHYSICAL REVIEW D 100, 023007 (2019)

What is a population inference? TResult

Population of Binary Black Holes(BBHs) in the universe.

 Observation through GWs.

• Mass and spin spectrum? • Red shift distribution?

• Merger rate?

Population ()00inference

Isolated stellar evolution scenario

Simulation of populations of BBHs based on scenarios.

Overall distributions of χ_{eff} in the universe.

rConclusion

We perform population inference for up to O3 events using two results of 1st Bayesian estimation.

Prior of uniform magnitudes and isotropic orientations (used in LVK analysis, blue line) VS. Prior of uniform χ_{eff} (this study, orange line)

Solid line is median, dashed line is 90% area.

Regarding the inference of the χ_{eff} distribution for up to O3 events, the tendency for χ_{eff} to peak around 0.05 is consistent between the LVK results and this study.

Aligned-spin BBH

Dynamical formation scenario

Reveal the formation scenarios of BBHs through dual approach comparing observations and simulations.

• The LVK prior may insufficient sampling $\chi_{eff} \approx \pm 1$, causing potential systematic errors in population inference.

• We implement the prior that uniformly distributes χ_{eff} .

• No significant systematic errors in population inference of $\chi_{\rm eff}$ caused by insufficient sampling.