

RЕ

Probing Neutrino Echoes In the IceCube Upgrade

Kareem Farrag International Centre for Hadron Astrophysics 20th November, 2024, for the 2nd Annual Conference of Transformative Research Areas (A)

OCE 千葉大学 ドロン宇宙国際研究セン \bullet **ICEHAP** International Center for Hadron Astrophysics

A01: Neutrino

Tau neutrinos are the least studied

mμ $\frac{\sigma(m_\mu)}{m_\mu} \sim 2.8 \times 10^{-9}$

 $m_{\nu_{\mu}} < 0.19 \; MeV/c^2$

mτ $\sim 6.8 \times 10^{-5}$ *<u>σ</u>(m_{W)}*

mW $\sim 1.5 \times 10^{-4}$

LEP

 $\sim 2.3 \times 10^{-5}$

* cosmology/BSM provides tighter constraints

In IceCube we recently saw seven ν_{τ}

* cosmology/BSM provides tighter constraints

- 9.7 years of data
- Seven ν_{τ} candidates identified using convolutional neural network with parent neutrino energies between [20 TeV, 1 PeV]
- 0.5 event expected background dominated by *νe*, *νμ*
- Absence of astrophysical ντ ruled out at the 5σ level
- Flux measurement consistent with astrophysical neutrino flux measurements and neutrino oscillations

Atmospheric Mixing means we might expect $(\nu_e : \nu_\mu : \nu_\tau) \sim (1 : 1 : 1)$

• To date, \sim 2000 ν_{τ} candidates have been seen across all experiments over the past two decades, with only O(20) being verified on an event by event basis

Atmospheric Mixing means we might expect $(\nu_e : \nu_\mu : \nu_\tau) \sim (1 : 1 : 1)$

- We should see from atmospheric oscillation almost equal amounts of , *ν^e* : *νμ* : *ντ*
- Large ν_{τ} appearance at ~ 20 GeV, right in the DeepCore energy range

Where are all the tau neutrinos? And how can we find them?

?

?

?

?

? ?

?

? ?

Where are all the tau neutrinos? And how can we find them?

?

?

?

?

? ?

? ?

Neutron echo!

24x 3'' PMTs & dia. 36 cm **~ 400 mDOMs** Developed in Germany

IceCube Upgrade - Deploying in 2025!

GOO ^{+業大学}
⊗©C ハドロン宇宙国際研究センター CEHAP International Center for Hadron Astrophysics

See Next talk by T. Tsuji Y. Kasai for Gen-2 **Prototype**

IceCube Upgrade - Deploying in 2025!

Chiba Team D -Eggs on their way to the South Pole!

Poster on FOM by T.Kobayashi

IceCube Upgrade - Deploying in 2025!

In particular for ν_{τ} *CC*:

Up to 2x better energy reconstruction thanks to 10 x effective photocathode area per unit volume

3x or better angular resolution

 $v_{\tau, CC}$

Inner = Cylinder(r=50m, h=275m) Outer=Cylinder(r=145m, h=275m)

Neutron Echo

Neutron Production Incident *ν τ* Capture

Neutron Capture Gamma emission Cherenkov emission

Neutron Capture Camma emission Cherenkov emission

14

We need to understand some key features about the microphysics

Neutron Capture **Capture Camma emission** Cherenkov emission

Due to the decay products + systematic uncertainty, per neutrino interaction, the neutron multiplicity (according to simulation varies by an order of magnitude)

 $\langle N_N \rangle = \langle$

• From ν_{τ} interactions simulated with GENIEv3 and GEANT4, we found that neutrons peak capture time occurs around >1m metres from the neutrino vertex above 10GeV 220µs after the primary neutrino interaction as expected

Eν

GeV)

0.81

Fit (yellow):

Neutron Capture Camma emission Cherenkov emission

- **•** From ν_{τ} interactions simulated with GENIEv3 and GEANT4, we found that neutrons peak capture time occurs around >1m metres from the neutrino vertex above 10GeV 220µs after the primary neutrino interaction as expected
- Thanks to the decay products per neutrino interaction, the neutron multiplicity (according to simulation varies by an order of magnitude)
- Finally, we learn that the neutron captures tend to Jacobian peak with respect, particularly at higher energy to the primary neutrino vertex

16

We need to understand some key features about the microphysics

Neutron Capture **Gamma emission** Cherenkov emission

- Simulating 2.2 MeV gammas in GEANT4 in-ice, we find that each gamma undergoes a median of \sim 16 scatterings in ice before they are completely absorbed over ~50cm
	- However, typically only the first two scatterings appear to produce e with enough energy to emit Cherenkov radiation \Rightarrow \sim 2 e emissions typically expected per gamma

18

We need to understand some key features about the microphysics

Neutron Capture **Gamma emission** Cherenkov emission

Neutron Capture **Gamma emission** Cherenkov emission

• As in the case of high energy, at GeV - TeV energies, the timing of photons at their production from GEANT4 contains three key peaks corresponding to the prompt, muon decay and CC, total neutron echo emissions*

Neutron Capture **Gamma emission** Cherenkov emission

• As in the case of high energy, at GeV - TeV energies, the timing of photons at their production from GEANT4 contains three key peaks corresponding to the prompt, muon decay and neutron echo emissions*

We calculated the fraction of photons that occur due to the photons that are produced after neutron captures - approximately 80% are due to the neutron echo between [20µs,1ms]

Neutron Capture **Gamma emission** Cherenkov emission

• As in the case of high energy, at GeV - TeV energies, the timing of photons at their production from GEANT4 contains three key peaks corresponding to the prompt, muon decay and neutron echo emissions*

• We calculated the fraction of photons that occur due to the photons that are produced after neutron captures - approximately 80% are due to the neutron echo between [20µs, Ims]

• The muon decay peak occurs around O(few) us in ice, which overlaps with the after-pulsing time frame of the DEgg - this may make it difficult to distinguish from noise

\ドロン宇宙国際研究センター

22

Simulated echo photons

We simulate 80000 tau neutrinos in GENIEv3, then interact them inside a 10m sphere of ice surrounding a DEgg implemented into GEANT4

- The plots on the right show the number of photons that hit either photocathode of the Egg, from both prompt and echo emissions
- A factor of 1000 less photons at O(µs) time scales are expected to hit the D-Egg

•
•
•
•

that hit a DEgg implemented in GEANT4

23

• Left plot shows the total energy spectrum for the interactions, detected events and detectable echoes per 10m sphere and D-Egg

•
•
•
•

The Detectable echoes with >3PE appear as low as ~ few GeV, but the largest contribution comes from neutrinos above ~ O(20 GeV)

Distance spectrum

String separation between modules is of the typical scales where the echo is detetectable (around 2-7m) so coincident measurement along strings could be a powerful tool to optimise echo detection - we are simulating now!

•
•
•
•

25

Estimated Echo Rates

• By simulating the atmospheric neutrino flux using MCEq and propagating them to the detector using nuSQuIDS, we can compute the following estimated rates for the ~300 DEggs to be deployed in the IceCube Upgrade

•
•
•
•

$\nu_{\tau} + \bar{\nu}_{\tau}$ detection rate (>3PE) per year ~

4808

 $\nu_{\tau} + \bar{\nu}_{\tau}$ echo detection rate (>3 PE) per year ~

145

Summary

• We estimate around **145 echo events** could be detected per year, and are currently simulating the neutron echo to figure out feasible signals and a trigger

• The IceCube Upgrade experiment deployment is already underway - detectors

• We are conducting experiments to verify the DEgg, one of the Upgrade modules,

- increase the number of tau neutrinos measured in the upcoming IceCube Upgrade experiment
- scheme
- have already in transit to the South Pole as we speak
- is capable to measure the echo signal

• We investigated the physics behind the neutron echo in Ice as part of the effort to

We want to catch as many neutrinos we can (including ν_τ !) That's why we are upgrading our detector

Backup

Neutron Multiplicity for $ν_τ$

D-Egg

- Plot shows number of neutrons produced as a function of neutrino energy
- Fit (yellow) corresponds to

$$
\langle N_N \rangle = \left(\frac{E_{\nu}}{GeV}\right)^{0.81}
$$

29

Uncertainties and Challenges - GENIE

- GENIE has over 150 theoretical and experimental systematics!
- Hadronization is modelled using AGKY model \rightarrow low invariant mass (W<2.3 GeV) hadronization is simulated by the KNO scaling-based phenomenological model. Lower than ν_{τ} CC threshold
- For High Invariant Mass PYTHIA handles the hadronization. Error on the multiplicity are of the order of 40-50% at 10 GeV
- Total neutrino cross sections uncertainties are within ~5-10% for *E^ν* ∈ [10,100] GeV
- Nuclear corrections are relevant in the GeV-TeV energy range

Figure 10: Total uncertainty from all sources (solid black). Contributions from intranuke assumptions (blue), INTRANUKE input (dashed red), hadronization model (solid red), and formation zone (dashed black).

Uncertainties and Challenges - GEANT

• Tau decays are treated as point like without resonances (ie processes that produce intermediaries are

• As for the hadronization scheme, this uses the FTFP_BERT_HP model - this has uncertainties for H and O

To improve our simulation, we already started to implement more robust modelling of the tau decay using

- GEANT misses some features specifically to do with tau decay
	- *τ* polarisation
	- not included by default $\tau \rightarrow \rho, a_1$)
- Overall these effects cause about **6% dimmer Cherenkov signals**
- with respect to their multiplicities of about $~140\%$
- As for gamma events, using BERT model number of gamma-rays generated by neutron inelastic scattering reactions is one is small
- the TAUOLA/PYTHIA8 Decay procedure

Backgrounds

• Strings 8 to 41 samples measured at the SNO lab low background HPGe detectors (as well as in lab samples and nearby IceCube

• Each sample was measured between July 2010 - August 2012 each

- samples)
- between 1.8 and 11.5 days
- Water was sampled from the bottom of the hole (clearer ice) but available

extraction exposed to compounds in the drill system - only upper limits

Radioactive Backgrounds measured for IC cores

Background Activity (Bq/kg) at 90% C.L.

Background Activity (Bq/kg) at 90% C.L

- From measurements dominant backgrounds from natural radioactivity occurs due to and ${}^{40}K$ ~ 40 Bq/kg $^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$
- If decay occurs in equilibrium, gamma rays of energy 186.1keV (²²⁶Ra), 295.21 and 351.92 keV (^{214}Pb) and 0.61, 1.120, 1.76 and 2.20421 MeV (^{214}Bi) ²¹⁴*Bi*

- \cdot ~ 300 mDOMs
- 2 8" PMTs with High Quantum **Efficiency**
- Waveform continuously digitized using a 14-bit ADC with an operation frequency of 240 MHz without any dead time after pulse shaping of the analog front-end circuit on the mainboard.

D-Egg

2x 8'' HQE PMTs & dia. 30 cm

~ 300 D-Eggs

Developed in Chiba

D-Egg can continuously read data

FPGA and outputs a signal when the data exceeds a programmable

2 Gbit DDR3 SDRAM which can store hundreds of milliseconds long

- D-Egg FPGA temporarily stores the digitized data in the buffer in the trigger level.
- The outputs are automatically transferred to an external onboard waveforms.
- Several additional data processing, such as data compression or the main cable.

charge extraction for the waveforms, are performed inside the module in order to remain within the bandwidth limits of the several-kilometer-long

Late light emission expected ~200µs

QQQ ^{+#*#}
⊗QC ハドロン宇宙国際研究センター onal Center for Hadron Astrophysi

37

Late light emission expected ~200µs

000 f素**
900 ハドロン宇宙国際研究センター onal Center for Hadron Astrophysi

38

Neutron Echo with Upgrade

QOO ^{千葉大学}
◎◎C ハドロン宇宙国際研究センター International Center for Hadron Astrophysics

Preliminary comparison with *ν^e*

Reco Resolution

Deepcore Event Resolution

Truth information shows Oscillation features

Event selection: Proceedings of NuFact2021 https://pos.sissa.it/402/062/pdf Reconstruction: https://arxiv.org/abs/2203.02303

Oscillation features smeared by detector Resolution and finite binning

Tau branching ratios

$$
\pi^{-} \bar{K}^{0} \nu_{\tau} \nK^{-} K^{0} \nu_{\tau} \n\pi^{-} \bar{K}^{0} \pi^{0} \nu_{\tau} \nK^{-} \pi^{0} K^{0} \nu_{\tau} \n\pi^{-} \bar{K}^{0} 2 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}) \n\pi^{-} K^{0}_{S} K^{0}_{S} \nu_{\tau} \n\pi^{-} K^{0}_{S} K^{0}_{L} \nu_{\tau} \n\pi^{-} \pi^{0} K^{0}_{S} K^{0}_{L} \nu_{\tau} \n\pi^{-} \pi^{0} K^{0}_{S} K^{0}_{L} \nu_{\tau} \n\bar{K}^{0} h^{-} h^{-} h^{+} \nu_{\tau} \n\pi^{-} \pi^{-} \pi^{+} \nu_{\tau} \text{ (ex. } K^{0}, \omega) \n\pi^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \omega, \eta) \nh^{-} h^{-} h^{+} 2 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \omega, \eta) \n\pi^{-} K^{-} K^{+} \nu_{\tau} \n\pi^{-} K^{-} K^{+} \nu_{\tau} \n\pi^{-} \pi^{0} \eta \nu_{\tau} \nK^{-} \eta \nu_{\tau} \nK^{-} \eta \nu_{\tau}
$$

 0.8384 ± 0.0138 0.1486 ± 0.0034 0.3817 ± 0.0129 0.1500 ± 0.0070 0.0263 ± 0.0226 0.0235 ± 0.0006 0.1081 ± 0.0241 0.0018 ± 0.0002 0.0325 ± 0.0119 0.0247 ± 0.0199 8.9868 ± 0.0513 2.7404 ± 0.0710 0.0981 ± 0.0356 0.1435 ± 0.0027 0.0061 ± 0.0018 0.1389 ± 0.0072 0.0155 ± 0.0008 0.0048 ± 0.0012

 $\mu^- \bar{\nu}_\mu \nu_\tau$ $e^-\bar\nu_e\nu_\tau$ $\pi^-\nu_\tau$ $K^-\nu_\tau$ $\pi^-\pi^0\nu_\tau$ $K^-\pi^0\nu_\tau$ $\pi^{-}2\pi^{0}\nu_{\tau}$ (ex. $K^{0})$) $K^-2\pi^0\nu_\tau$ (ex. K^0) $\pi^-3\pi^0\nu_\tau \,\, ({\rm ex.}\,\, K^0)$ $K^-3\pi^0\nu_\tau$ (ex. K^0,η) $h^{-}4\pi^{0}\nu_{\tau}$ (ex. K^{0}, η)

Cherenkov photon Timing distributions 1 GeV neutrino events (Hydrogen Primary)

Cherenkov photon Timing distributions 5 GeV neutrino events (Hydrogen Primary)

Cherenkov photon Timing distributions 10 GeV neutrino events (Hydrogen Primary)

Cherenkov photon Timing distributions 1 GeV neutrino events (Oxygen Primary)

Cherenkov photon Timing distributions 5 GeV neutrino events (Oxygen Primary)

Cherenkov photon Timing distributions 10 GeV neutrino events (Oxygen Primary)

