

A simulation about electron diverter on board HiZ-GUNDAM

Si(sensor)

Fig 5: Illustration

of divertor

Akito Kutsumi¹, Daisuke Yonetoku¹, Tatsuya Sawano¹, Makoto Arimoto¹, Hatsune Goto¹, Ryuji Kondo¹

1. Kanazawa Univ.

Abstract

Gamma-ray bursts (GRBs) are transient phenomena that release the radiation energy on the order of 10^{51} - 10^{54} ergs and known as the brightest explosion in the universe. HiZ-GUNDAM observes GRBs within multi-wave length. However, there is a risk of false detections by cosmic electrons. So, we will reduce the electron's incidents with magnetic field. To develop enough electron divertor, we should find problematic electron and suitable magnetic field. This poster reports on the progress of simulations with Geant4 to consider the effective electron diverter.

1. Introduction

I. Gamma ray bursts (GRBs)

 GRBs are transient phenomena that release the radiation energy on the order of 10^{51} - 10^{54} .

Illustration of GRB

Credit: NASA Goddard Space Flight Cente

They are known as the brightest explosion in the universe.

Using the bright emission GRBs at high redshift (z > 7), We can prove physical condition.

II. HiZ-GUNDAM project

- Main mission
- (1) observe multi messenger sources in the early universe within multi-wave length.
- (2) Exploration of the early universe.

- (1) Combine data of GW & Ultra High-Energy Neutrino.
- (2) Confirmation of existence of relativistic jet.
- (3) Understand formation process of BH using energy transition.

• HiZ-GUNDAM will enter the sun-synchronous dawn-dusk orbit. Then, many electrons are present. →We have to reduce the electron.

III. HiZ-GUNDAM's sensor

Energy band : 0.4-4 keV

 $: 75 - 100 \, \mu m^2$ Pixel size

If electron deposits energy of 0.4-4 keV some pixels, sensor can't distinguish between electrons and photons.

Call such electron "confusing" electron in this poster.

IV. Electron diverter

To prevent false detections by "confusing" electrons, we will install an electron diverter with magnetic field.

Should research

(1)find how electron is "confusing" electron. (2) find magnetic field

pnCCD

Fig 2: rough drawings of focal detector (magnets)

focal plane

Fig 1: schematic drawings

Lobster

pnCCD

Readout

system

Eye Optics

Electron diverter

installed here

of HiZ-GUNDAM

X-ray from GRBs

than 10 keV within a single pixel of 100 μ m \times 100 μ m. About fig 6

2. Define "confusing" electron

center of sensor vertically, 10000 times.

• Almost all electron has $E_e < 10$ keV is

Situation: electron has certain energy(E_e) incidents in

Definition of "confusing" electron is deposits energy less

 About 10-20% of electron 10 keV $< E_e <$ 30 keV will be "confusing" electron

"confusing" electron.

 So, we should be careful about electron $E_e \leq 30$ keV.

of situation

electron's energy [keV]
Fig 6: frequency of "confusing" electron This graph is discontinuous in $E_e=10~\mathrm{keV}$

3. Check implementation of magnetic field

Situation: Incident electron ($E_{\rho} = 1 \text{ MeV}$) in uniform magnetic field to check implementation of $\bigotimes B$ magnetic field with relativistic electron (like Fig 8). Red dot : Simulation data Blue line: Theoretical cave

4. Calculate formula of magnetic field Spin(approximate as dipole) · Think magnet as box filled by magnetic dipole.

Concretely, calculate this integration.

 $\mu_0 \int 3\mathbf{r}(\mathbf{m} \cdot \mathbf{r})$ $J_{Volume\ of\ magnets}$ $[4\pi]$ r^5 where $\mathbf{m} = (m_x, 0, 0), \mathbf{r} = (x, y, z), r = |\mathbf{r}|$ Thus, we get formula of magnetic field

↑Fig 10 : Illustration of model of magnet ←Fig 11 : Plot of magnetic field √Fig 14:

magnetic field

Compare shape

 B_z is got by replacing z with y in B_v (as indefinite integral.)

Compute two patterns of magnetic field A and B 0 5 10 15 -10 -5 0 5 10 15 Some non mågnetic Filled by magnetic Compact More compact field spot field

↑Fig 13 : Compare map globally ↑Fig 12 : Compare map locally B looks better than A for electron divertor but shape of B

is similar to magnet's magnetic field \rightarrow More significant effects the attitude. 5. Future task Simulate with real geometry and consider electron divertor can remove "confusing" electron.

magnetic field

· Estimate effect for other device by electron divertor.