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Astrophysical Neutrinos

e Astrophysical neutrinos

lceCube has been detected astrophysical

neutrinos

Not only background diffuse emission,

but also candidates of point sources

Signs of neutrino signals from several O o - 0% o
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Seyfert galaxies have been claimed! Signalness (lceCube 2022)
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What we want to find out

* Promising source?

* Should be not very bright in gamma-rays but make a lot of cosmic rays

* Low-density accretion disk with magnetic turbulence around an AGN

* Particle acceleration and associated neutrino radiation via photo-meson processes

f cosmic rays
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What we want to do and to find out

“Beyond one-zone”
* Where are injected particles accelerated?
* Where do particles accelerated?
* What properties of the accretion disk do

cosmic ray/neutrino spectra reflect?

cosmic rays based on the structure of the disk

Il: Calculate the acceleration and propagation of
obtained from MHD calculations!



What we want to find out (“Ambition” part)

* Spectrum of Magneto-Rotational Instability (MRI) turbulence

MRI in accretion disks has a broad injection scale - inertial range has not resolved

Kawazura & Kimura (2024): First time ever to resolve from MHD scale to inertial range

* At much smaller scales, properties are revealed by reduced MHD (Kawazura et al. 2022)

Ready to model turbulence from dissipation to MHD scales with a consistent theory!

Aim to solve “acceleration from supra-thermal to ultra-high energy cosmic rays” in accretion disks!
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Basic equation and methodology

* Fokker-Planck equation: describing cosmic ray propagation and acceleration
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3D MHD :r; Fokker-Planck :E Observable
simulation Solver (v, neutrino, ...)

. Development of a post-process code to solve this equation
Th 1S WO rk ; based on MHD simulation in 3D (spatial) + 1D (energy)



Basic equation and methodology

* Fokker-Planck equation: describing cosmic ray propagation and acceleration

Advection: velocity field (MHD sim.)
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Basic equation and methodology

* Fokker-Planck equation: describing cosmic ray propagation and acceleration

Advection: velocity field (MHD sim.)
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Basic equation and methodology

* Fokker-Planck equation: describing cosmic ray propagation and acceleration

Momentum Diffusion: modeled from MHD simulation

Advection: velocity field (MHD sim.)
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Basic equation and methodology re = —

* Fokker-Planck equation: describing cosmic ray propagation and acceleration
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Interaction between charged particles and turbulence
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Interaction between charged particles and turbulence

* Efficient scattering of particles by waves (cyclotron resonance)

 Wave-Particle interaction: Energy transfer between waves and particles

= causes both spatial diffusion and momentum diffusion of particles!
= “Fermi acceleration”

To calculate the acceleration of charged particles, we need...
to model a turbulence — Based on MHD simulations!
to calculate propagation of particles consistent with turbulence model

— Solve Fokker-Planck equation w/ MHD turbulence in 341D

[ ~ 1. ... particles are scattered by fluctuations in magnetic field lines
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Basic equation and methodology re = —

* Fokker-Planck equation: describing cosmic ray propagation and acceleration

Turbulence felt by high energy particles Turbulence felt by low energy particles
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Basic equation and methodology

* Fokker-Planck equation: describing cosmic ray propagation and acceleration

Momentum Diffusion: modeled from MHD simulation

Advection: velocity field (MHD sim.)
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dN/dp

Method & Current status

e Stochastic Differential Equation method (SDE method)

* Convert partial differential eq. into “many ordinary differential egs. w/ stochastic terms”

* Parallelization ©, Multi-D/species ©, Stability ©, Accuracy A

("." Accuracy is determined by statistics—> Can be covered by an efficient computation!)

* Current status: Fokker-Planck equation solver part completed!
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Test Calculation: MHD turbulence

* MHD turbulence (incompressive) (by Y. Kawazura, see also Kawazura & Kimura (2024))

e Calculate spatial diffusion with MHD simulation data of artificially excited turbulence

' 57 6 "/1 St O =) 3D calc. (256x256x256)
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Periodic boundary
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Test Calculation: MHD turbulence

e Model:

* Quasi-Linear Theory (QLT) + Alfvenic turbulence (e.g., Blandford & Eichler (1987))
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Test Calculation: MHD turbulence

* Model:

* Quasi-Linear Theory (QLT) + Alfvenic turbulence (e.g., Blandford & Eichler (1987))
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Test Calculation: MHD turbulence

Model:

* Quasi-Linear Theory (QLT) + Alfvenic turbulence (e.g., Blandford & Eichler (1987))
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Test Calculation: MHD turbulence

* Model:

e Quasi-Linear Theory (QLT) + Alfvenic turbulence (e.g., Blandford & Eichler (1987))
1 SB\ ? §B\* E
D)= — — D, =Dyl — us: 7y, =
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Summary / Next steps

* Summary

* We are developing a code to solve for the acceleration and propagation of cosmic rays consistent

with MHD simulations

* Using a stochastic differential equation approach, a easily extendable and parallelization-efficient
code can be designed
* We have calculated for the spatial diffusion of particles on a box simulation of MHD turbulence

* We adopted the quasi-linear theory (QLT) and solved the Fokker-Planck equation consistently with MHD

simulation

* We confirm that the code can capture the combined effect of QLT and MHD: field-line wandering

* Next step

Calculations for multi-energy case (since this work was a mono energy calculation)

Calculations including momentum space diffusion (acceleration)

Implementation of time evolution of turbulence field

Application to accretion disk systems






Relationship to other studies in CO1

e Kimura-san said...

e MHD Simulation + Test Particle Simulation
- Solve orbits of CR particles using MHD data sets
- Enable us to obtain diffusion coefficients

- limited to CRs with r; > Ax
SSK et al. 2016, 2019, in prep

Model for diffusion coefficient

e MHD Simulation + CR Transport simulation
- Solve CR transport equation using MHD data sets
- We need a model for diffusion coefficients

- We can obtain useful info for CRs with r; < Ax

Talk by Ishizaki-san; Poster by Kawashima-san




Stochastic Differential Equation (SDE) method

* (lto-type) stochastic differential equation (SDE)
* Ordinary differential equation w/ stochastic term

* |to-SDE has a following standard form:
% = —a(b) + b(d) - €
u t t o
& di = —a(D)dt + b(V) - dL < 9(t) = 9(0) — f a(v(s))ds + / b(9(s))dL(s)
0 0

Where a(v) and b(v) are smooth functions, ¢ is a stochastic variable generated by Gaussian process

* One-to-one correspondence between a SDE and a PDE (partial differential equation)
* The ensemble of solutions to the SDE follows a PDE called the master equation

* |In particular, for the Ito-SDE, the master equation is the diffusion-advection equation

& = —a(i) +b() € = L 08 _ 2 (o) (v, 1) + ;’z (%F)(UJEP(UJ))
7_ _i U ——— i N . .
Advection Diffusion

Drift Random walk

(mean free path) ((f(v)) = /f(v)P(v t)dv

)



Stochastic Differential Equation (SDE) method

* (lto-type) stochastic differential equation (SDE)
* Ordinary differential equation w/ stochastic term

* |to-SDE has a following standard form:
do
dt

A L : A
& di = —a(D)dt + b(V) - dL < 9(t) = 9(0) — fu a(v(s))ds + /U b(9(s))dL(s)

Where a(v) and b(v) are smooth functions, ¢ is a stochastic variable generated by Gaussian process

~a(@) + b(i) - &

* One-to-one correspondence between a SDE and a PDE (partial differential equation)

The advection-diffusion equation can be solved
by solving a large number of I1to-SDEs and taking their ensemble!

dv HP('U f] 0 9% /1 ,
—7 = —alb) +b(® — : ) —b(
7 (0) +b(D) - £ = 7 (@) P(v,1) + = (_gf}(_}_)_ P(v i))

Drift Random walk Advection Diffusion

(mean free path) ((f(v)) - / F(v)P(v, t)dv)



Advantages / Disadvantages (vs. grid-based method)

e Advantages
* Easily expandable to higher dimensions and multi-particle species
* High parallelization efficiency ~100% ("." just solve many independent ODEs)

* Computational stability is easily ensured because CFL conditions caused by grid size do not

Ooccur

* Intuitive introduction of new effects, since only effects over single particle equations are

considered

e Disadvantages

 Difficult to set boundary conditions

* But, in our field, we basically consider relatively simple boundary conditions (e.g., “0” at infinity)

* Computational accuracy depends on particle number statistics

* Can be compensated by high parallelization efficiency



Test-calculation: simple diffusion in 3D-space

3D diffusion: D=1.0, impulsive injection in t=0 (@r,=0)

* The calculation is performed in Cartesian coordinate (x,y,z)
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Test-Calculation 2: Stochastic acceleration

* Mertsch 2011; Green's function of the FP equation in momentum space

T2 (¢ (P L + a1

p* Op
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https://ui.adsabs.harvard.edu/abs/2011JCAP...12..010M/abstract

Test-Calculation 2: Stochastic Acceleration

* Example of formulation in SDE

* If d=4mp?f, we can rewrite the FP equation in the form of the master equation for an [to-SDE

T o (pz (‘Dpp(p, J aféi’ F ) t)))

. b 2
m— (R P R R )

* l|to-type SDEs and Master Equations (Restated)

dv . 8 OP(v,1) d 8% /1
WU a(d) + b(#) - ) _ , L o)
= a(v) +b(v)- €& < 5 > (a(v)P(v,t)) + W (2 b(v)?P(v, .i))

* By comparing the coefficients, the SDE corresponding to the FP equation is obtained as:

ZDpp(Pat) aDpp(p:t)
+
p Op

-

)dt + \/’zﬂpp(p, £)dW

5= (AGp1) +



Test-Calculation 2: Stochastic Acceleration

2Dpp (p, t) n aDpp(p: t)

dp = [ A(p,t) +
p((p) . o

. , , dt + +/2D,,(p, t)dW
* Comparison with exact solution ) \/ re(P11)

* Points w/ error bars: simulation by SDE code, Solid line: analytical solution

Successfully solve the FP equation with this technique!
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Test-Calculation 3: anisotropic diffusion

* Magnetic field: ¢-direction

® KJ_=10_6K//, K//=30 X 1028(E/10 Ge\/)l/3

* Setting: 1000-particles, 3000yr, Power-law injection to energy space
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Anisotropic diffusion is solved well!

Now, Roughly all processes have been introduced

=Next, connection with MHD calculation
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Test-Calculation 4: Pulsar Wind Nebulae

* MHD
* Byloading (mock) 3DMHD data, interpolation function of velocity and magnetic fields are generated
e Comparison: Spherically symmetric steady-state diffusion model of PWNe (Ishizaki+2018; left)

* Differencesin calculation setup:
* Boundary: SDE code injects particles multiple times at appropriate time intervals to reproduce fixed boundaries

* Grid code solves the steady state eq., while SDE code solves the time-dependent eq. until it becomes steady.

* Energy spectrum of particles at each radius (calculated in 3+1 dimensions in the SDE code)
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