Thermal analysis of the near-infrared telescope on board the HiZ-GUNDAM satellite

Rinon Kageyama¹, Kohji Tsumura¹, Hideo Matsuhara², Akihiro Doi², Daisuke Yonetoku³ and HiZ-GUNDAM collaboration ¹Tokyo City University, ²ISAS, ³Kanazawa University Email:g2481904@tcu.ac.jp

1. Purpose of HiZ-GUNDAM satellite

Exploration in the early universe

The gamma-ray burst (GRB) which is the biggest explosion in the universe can be observed in the early universe.

 \rightarrow Star formation rates and reionization processes in the early universe can be understood.

Observation methods

 \rightarrow Black holes and heavy element formation processes can be understood.

2. Thermal problems of this satellite

Thermal requirement:

- Telescope body: < 200 K & IR detector: < 120 K Radiative cooling (no mechanical cooler)
- A previous study has succeeded in temperature requirements. Telescope body: <165 K & IR detector: <105 K
- But temperature changes due to attitude change may degrade imaging performance.

4. Thermal model change

5. Analysis results

Table 2: Allowable expansion and actual expansion for previous and new models.

	Allowable expansion	Actual expansion
Previous model	18 µm	34.0 μm
New model	40 μm	27.0 μm

Table 3:Requirement and achieved temperature of temperature and detector.

	Telescope	Detector
Requirement	200 K	120 K
Previous model	164.5 K	104.1 K
New model	164.5 K	96.9 K

Changes in model

(1) Telescope enclosure extended vertically to extend the focal length of the primary mirror. 2 Focal point is moved to the top, so the detector is placed at the top.

Benefits

(1) Longer focal lengths allow for greater displacement tolerance due to thermal deformation. 2 The detector to be cooled has been moved from the satellite bus to the position closer to the radiator.

• Tolerances have been relaxed to meet the requirements. • Actual expansion is within the allowable expansion.

• Telescope and detector temperatures also remained below the required values.

6. Future Prospect

• The results of the manufacturer's conceptual study are also incorporated to further refine the thermal model and improve accuracy.