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Bayesian Inference is a statistical method for estimating unknown parameters based 
on observed data. It uses Bayes' theorem to combine prior knowledge (the prior 
distribution) with new data (likelihood) to update beliefs about the parameter values, 
resulting in a posterior distribution:

Gamma-ray burst (GRB) is the most luminous explosion in electromagnetic bands 
with gamma-ray prompt emission and multi-wavelength afterglow emission. These 
emissions are thought to originate from radiation from relativistic jet ejected by 
collapsing massive stars or binary-neutron star mergers, but the radiation mechanism

In recent years, Bayesian inference has been actively applied to estimate model parameters for gamma-ray bursts, with Markov Chain Monte Carlo (MCMC) 
methods being widely used for sampling. Alternatively, an approach known as Clustered Nested Sampling (CNS) has also been proposed for this purpose. 
Since these are independent methods, it is essential to compare their characteristics, advantages, and limitations to determine the optimal approach for 
parameter estimation. This study aims to evaluate both methods to provide insights that aid in selecting the most suitable technique.

𝜋(Θ)	 ：Prior function.

𝐿 𝑋⃗ Θ ：Likelihood function.

𝑝 Θ 𝑋⃗ ：Posterior probability distribution.

Θ = Θ!, Θ", … , Θ# ：D-dimensional model parameters.

To obtain the posterior distribution using Monte Carlo methods, it is necessary to 
adopt efficient sampling techniques, as exhaustive search across all values in a 
high-dimensional space is impractical. In this study, we discuss two methods; 
Markov Chain Monte Carlo and Clustered Nested Sampling method.

Useful for inferring the 
most likely “cause” 
from observation.

Markov Cain is a chain with non-relation of values except between steps 𝑖 and 𝑖 + 1.

When the convergence condition is satisfied, to reach a stationary distribution.
𝑷(𝚯𝒊"𝟏|𝚯𝒊, 𝚯𝒊$𝟏, … , 𝚯𝟏) = 𝑷(𝚯𝒊"𝟏|𝚯𝒊)

・Irreducibility： All states can be reached from any state.
・Aperiodicity ： The greatest common divisor of the set of iterations 

  until returning to a certain state is 1.

It requires trial and error to tune: Sufficient entire chain length, burn-in phase length, 
and autocorrelation length.

Nested Sampling is a Monte Carlo technique aimed at efficient evaluation of the 𝒁. 
𝒁 is estimated by moving prior volume 𝝌 1 to 0 and adding up the likelihood.
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In Clustered Nested Sampling, some ellipsoids in D-dimensional space replace the 
prior volume 𝜒. This allows sampling from multimodal distributions.
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Standard model parameters
𝜃) Viewing angle 
𝜃* Half-opening angle of jet
𝛤+ Initial Lorentz factor jet central axis
𝐸+ Initial isotropic equivalent energy on-axis
𝑛+ Number density of ISM
𝑝 Electron distribution power-law index
𝜀, Thermal energy fraction in electrons
𝜀- Thermal energy fraction in magnetic field
𝜉. Fraction of electrons that get accelerated

More complicated Model parameters
𝜃# Half-width of the jet core
𝑘 Spectral index of number density ISM

…

GRB afterglow theory has a lot of model 
parameters, therefore, Bayesian Inference 
to estimate unknown parameters based on 
observed data.

and jet structure are not yet understood.

MCMC CNS

Turing.jl[2] Tool MULTINEST [1]
16 CPUs Parallelization 16 CPUs

6 Number of dimensional 6
4.7 hour (1e4 steps) Convergence Time 〜 0.5 hour

Using a simulated dataset based on the fireball model for GRB afterglow, generated 
in collaboration with Yo Kusafuka, we conducted parameter estimation with both 
MCMC and CNS methods. We present a comparative analysis of these methods, 
focusing on computational time and interpretability of the results.

In this study, we explored the use of MCMC and CNS methods for posterior 
distribution sampling in high-dimensional parameter spaces, particularly in the 
context of model parameter estimation for phenomena such as Gamma-Ray Bursts 
(GRBs). The MCMC method, while relatively simple and versatile across various 
models, requires careful tuning to ensure convergence, such as adjusting the 
proposal distribution and handling the complexities of long chains. On the other 
hand, the CNS method excels in efficiently sampling from multimodal distributions 
and can provide rapid convergence when the approximate shape of the posterior 
distribution is known. However, it may be less efficient for cases involving simple 
posterior distributions. We should understand the characteristics of these methods 
and use these methods for more systematic theoretical interpretation of GRB.
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