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Abstract

We explore the phenomenon of relativistic shock breakout emanating from an envelope with a gradually decaying density profile. To evaluate the breakout
signal, we calculate the steady-state structure of relativistic radiation mediated shocks, incorporating photon escape at the upstream boundary, characterized
by the fraction of shock energy in escaping photons, fesc. We present the shock structure and the spectra of the escaping photons for shock velocities of 1y =
2,6, and 10. Compared to the analytical model of Granot et al. (2018), our findings reveal a significantly narrower shock width, which may be attributed to
the presence of a subshock whose strength increases with fesc. This suggests that relativistic breakout emission 1s more prolonged and energetic than
previously estimated. The escaping photons exhibit a spectral peak around Ep = 300 to 600 keV, largely independent of fese and I'w, due to temperature
regulation in the immediate downstream region by the pairs. In all cases, the escaping photon spectrum below the spectral peak shows a nearly flat
component (fy «vV), while above the peak, a high-energy extension emerges.

Introduction Comparison with Analvtical Model (Granot et al. 2018)
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