Study on light collection method of on-board anti-coincidence scintillation counter for SMILE-3

Kanaho Okamoto, M.Abe^A, H.Iiyama^B, T.Ikeda^A, T.Oka^C, J.Kushida^E, S.Kurosawa^D, M.Sakata, T.Sato^A, T.Sawano, A.Takada^A, A.Tanimori^A, H.Tsukamoto^A, S.Deguchi^A, T.Nakamori^B, M.Mori^C, K.Hamaguchi^F, K.Miuchi^G, Y.Mizumura^H, Y.Munakata, D.Yaegashi^B, R.Yoshioka^A Kanazawa U., Kyoto U.^A, Yamagata U.^B, Ritsumeikan U.^C, Tohoku U.^D, Tokai U.^E, UMBC^F, Kobe U.^G, ISAS/JAXA^H

1.Introduction

> Continuous component in the MeV bandwidth(0.1-100MeV)

- Observations excess the model of inverse Compton scattering
- No known astronomical species can account for this radiation
- Possible Candidates for Identity
- Uncertainty in interaction of cosmic rays with the interstellar medium
 - Collection of many celestial bodies
- Dark Matter
- Primordial Black Holes

4. Bread Board Model of ACS

- Plastic scintillator
 - Type No. : EJ-200 (Eljen)
 - size: 100*200*10 mm
- light read position: 2-mm from the top (optical fiber)
- MPPC (Multi Pixel Photon Counter)
 - Type No. : S13360-6050CS (Hamamatsu photonics)
 - Photodetector size: 6.0*6.0 mm²
- > Setup

 $^{2/g}$

(cm)

 μ_{en}/ρ

103 \

10²

- Cover the scintillator with Teflon reflective material
- Connect MPPC to readout device to detect photons

- All-sky observation in the MeV region
- 32 steady sources were detected
- by COMPTEL are GRB • 31 gamma-ray burst (GRB) were detected

2.SMILE-3 Project

Sub-MeV/MeV gamma-ray Imaging Loaded-on-balloon Experiments

-Balloon observation using Compton camera to observe the galactic center for about 1 day

Electron-Tracking Compton Camera(ETCC)

■ Gas Track Detector

Compton recoil electron tracks and energies

Half of the objects observed

Pixel Scintillator Array Absorption points and energies of Compton-scattered gamma rays

- Uniquely determines energy and direction of arrival

Background and source spectra are clearly different

 \rightarrow This plastic scintillator can be used to detect gamma-ray and beta-ray

5. GRB sensitivity calculation

Plastic scintillator (vinyl toluene)

- Calculation conditions
- Scintillator density: 1.023 g/cm³
- Scintillator thickness: 10 mm
- Find of view Ω: 3 sr
- Lower limit of acquisition **E**₁: 60 keV •
- Upper limit of acquisition **E**₂ : 1000 keV

Radiation source

Optical fiber

200mm

Plastic scintillator

MPPC

10mm

- Reconstruction of incident gammaray for each event
- > SMILE-3 equipment configuration ETCC size: about 50 cm
- The number of charged particles is large compared to the number of gamma rays, and they become noise and interfere

with the analysis

Need a system to detect charged particles

Takada et. al(2023)

3. Anti-Coincidence Scintillation **Counter System (ACS)**

Charged

particle

5 sides around the ETCC are covered with scintillators of about 60 cm each side

- Detection of charged particles
 - \rightarrow veto as background event
- Detection of increase of gamma-ray counts

- 0 100 d/n 10 10-3 Photon Energy (MeV)
- Calculation Procedure
- 1. Obtain collection efficiency $\varepsilon(E)$ for peak energy from NIST XCOM
- ϵ (E) = 1- exp (- μ/ρ * density * thickness)
- 2. Define band function $N_{B}(E)$ for CXB(Cosmic

X-ray Background) 0.01015 $N_B(E) =$ <u>∖</u>1.32 **\ 2.88** E **29.99keV** 29.99keV Ajello et.al (2008)

- 3. Using Eq(1), find the background count rate B(E)
- 4. Using Eq(3), find the flux F_T for each peak energy ($\sigma_0 = 8\sigma$)
- Calculation Result
- The change in slope of the sensitivity

- Assuming 3-mm Al in front of scintillator
- GRB spectrum:

Band function (\mathbf{a} =-1, $\boldsymbol{\beta}$ =-2.3)

- Integration time **Δt**: 1sec
- Effective area **A**: 60.6*60.6 cm²

Gamma-ray

 \rightarrow capable of detecting GRBs

Request to ACS

charged particle detection efficiency : 99%~99.99%

- charged particle: to be detected with ionizing loss
- gamma ray: pass through a scintillator

and are detected by ETCC

rise time jitter: 3~5ns

lightweight and compact signal readout device

curve can be seen at 60 keV

• Swift/BAT and SMILE-3/ACS sensitivity curves are roughly the same

Given the same sensitivity as Swift/BAT,

GRBs are expected to be detected as often as once a week

6.Conclusion • Future work

 \checkmark Bread board model of ACS is able to detect gamma-ray and beta-ray

- \checkmark With ACS, there is sensitivity to detect GRBs as often as once a week
- \checkmark Considering the exact conditions and performing detailed calculations to

obtain the expected GRB detection sensitivity

✓ To develop an engineering model