Improvement of Expected Performance of MONSTER onboard HiZ-GUNDAM satellite

The third annual conference of Transformative Research Areas (A), "Multimessenger Astrophysics" 18-20 Nov. 2025

ABSTRACT

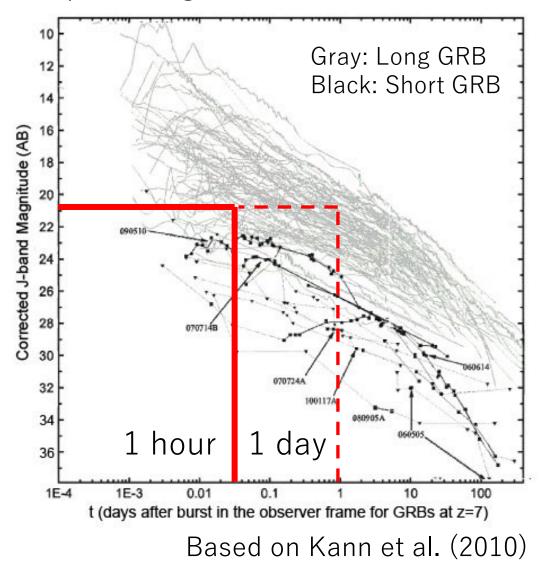
- Current development status of MONSTER, a visible & near-IR telescope onboard HiZ-GUNDAM
- Possible improvement of expected scientific performance of MONSTER, namely the detector system

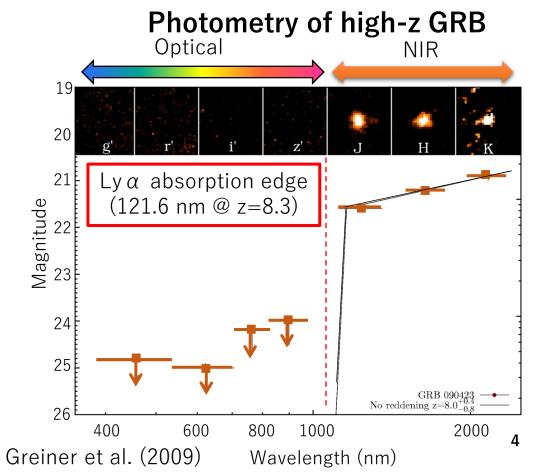
Kohji Tsumura, Rinon Kageyama (Tokyo City Univ.), **Hideo Matsuhara**, Akihiro Doi, Keisuke Shinozaki (ISAS, JAXA), Shuji Matsuura (Kwansei Gakuin Univ.), Koji Kawabata, Hori Tomoya (Hiroshima Univ.), Hiroshi Akitaya (Chiba Institute of Technology), Daisuke Yonetoku (Kanazawa Univ.) HiZ-GUNDAM / MONSTER team

List of my talk

- 1. Introduction purpose of MONSTER onboard the GRB search satellite
- 2. Current Design Specifications of MONSTER
- 3. Key technical challenges in MONSTER development
- 4. Status of on-going works
 - (1) BBM development of MONSTER Telescope
 - (2) Imaging sensors
- 5. Possible improvement of scientific performances Summary

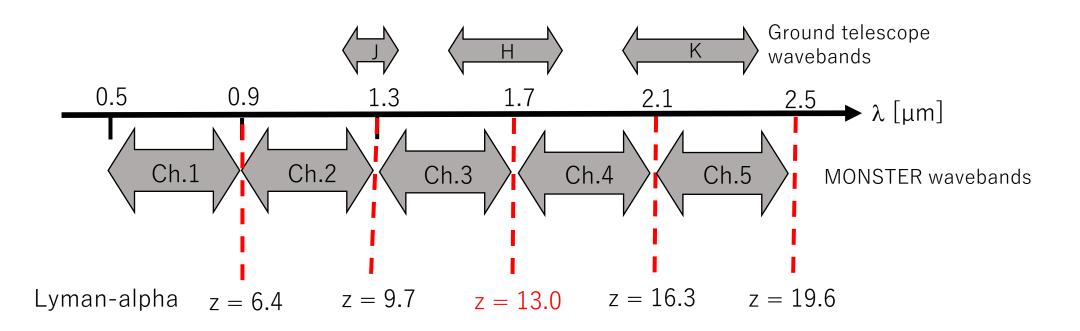
HiZ-GUNDAM satellite


Wide field X-ray Monitor EAGLE Exploration of Ancient GRBs with Lobster Eye

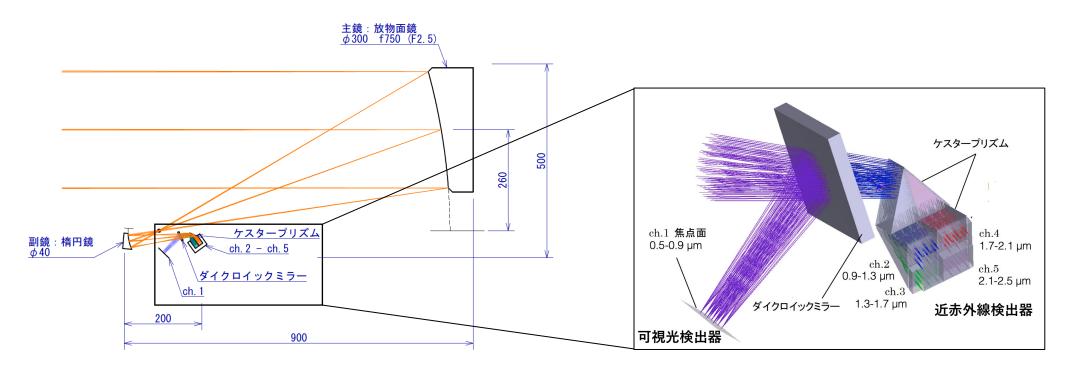

Visible and near-IR telescope
MONSTER Multiband Optical and Near-IR
Simultaneous Telescope for Efficient Response

1. Introduction Quick follow-up is a Key to catch high-z GRB

Expected Light curve for GRBs @ z = 7



The afterglow is expected to be brighter than 21mag at 1 hour after the burst (in >90% probability)


1. Introduction Purpose of MONSTER onboard the GRB search satellite

- Rapid (goal: within 15 min) automatic follow-up toward target detected by EAGLE
- Identify GRB afterglow & estimate its (crude) photometric redshift
 - Redshift can be determined with good accuracy up to z < 13.0.
 - In principle, detection is possible up to z < 19.6

2. Current Design Specifications of MONSTER

- A reflective (offset Gregorian) telescope with 30 cm aperture
- Simultaneous 5-band (visible + 4 NIR) imaging via dichroic mirror and a Kösters prism
- Field of View: 15 x 15 arcmin² (12 x 12 un-vignetted): sufficiently larger than EAGLE error circle (3 arcmin radius) two image sensors (visible and NIR) with 3 arcsec image quality
- <u>Cooled Telescope: shall be below 200 K, while the NIR sensor is below 120 K</u> by only passive, radiative cooling system
- Telescope structure: all aluminum, athermal design (similarly contraction by cooling)

3. Key technical challenges in MONSTER development

- Thermal design, with only passive cooling to cool and maintain telescope below 200 K, detectors below 120 K
 - industrial and inhouse study (see R. Kageyama's poster #62 for in-house study)
- Optical: god image quality shall be maintained at cold
 - Verification by BBM with "athermal design"
- Kösters prism development (see Hori's talk next)
 - a noble beam-splitter splitting incident light into multiple wavelengths on a single image sensor
- Image sensors (detectors) with electronics
- Onboard image data processing (see H. Niinuma's poster #57)
- With the financial support of *Transformative Research Areas (A), we expect to perform all of the above activities. Hereafter I'll introduce on:*
 - BBM telescope development and test
 - Image Sensor development (commercial CMOS sensor for visible band)

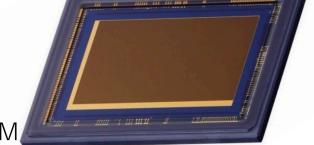
4. Status of on-going works

(1) BBM development of MONSTER Telescope

Purpose

- Verify the cryogenic optical performance is within the requirement
 - demonstration of athermal design (all major structure components are made of Aluminum)

Method


- Modify the existing cryo-vacuum chamber at Kanazawa University
- Image quality at cold is to be measured by introducing a \sim 30 cm ϕ collimated beam

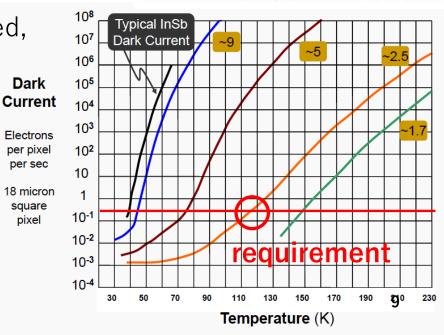

Planned Schedule

- FY24: mechanical and thermal design of test configuration
- FY25: design and fabrication of BBM mirrors and structures
- FY26: BBM test in the cryo-vacuum chamber at Kanazawa University

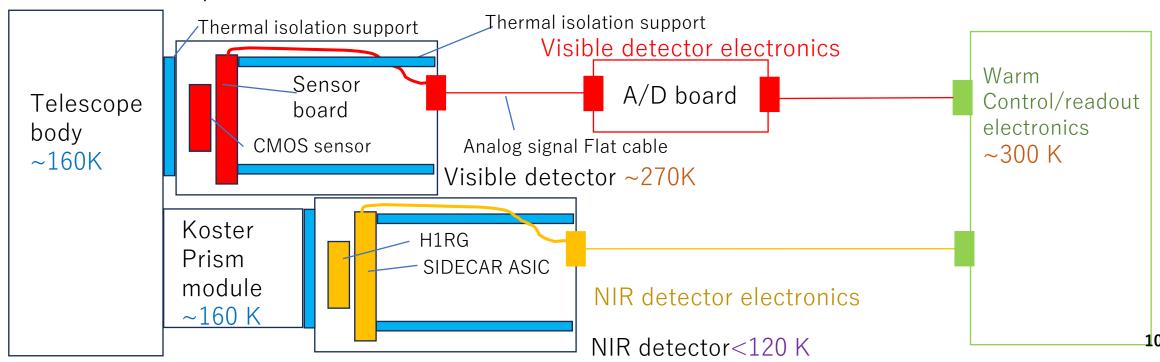
4. Status of on-going works(2) Imaging sensors

Canon LI3030SAM

[Visible-band detector]


- Teledyne HyViSI or Canon LI3030SAM
- HyViSI is current baseline, but we also seek for the possibility to use commercially available C-MOS detectors
 - Canon LI3030SAM: Cryogenic and radiation tests completed, now onboard control/readout electronics is under study

[Near-IR detector]


- Teledyne H1RG + SIDCAR (or ACADIA) ASIC
- Dark current must be <0.3 e⁻/s from sensitivity requirement
 - → temperature < 120 K

- 4. Status of on-going works
- (2) Imaging sensors: thermal/electrical architecture
- Challenges on commercial CMOS sensor onboard
 - Commercially used sensor normally provides us with fast ($10\sim50$ fps) readout but with large heat dissipation
 - but we only need relatively slow (0.1 a few fps) readout but low heat dissipation \rightarrow challenge in the readout/thermal design
 - In-house study (with help by two young JAXA members by a scheme of "intra-JAXA internship")

5. Possible improvement of scientific performances

Through our current activities we hope to obtain:

By BBM telescope development

After verifying athermal design, we will also get how the image quality changes with temperature gradient

- → how much can we accept the earthshine illumination to telescope
- → improvement of GRB follow-up capability
- By Visible band detector development
 - Challenges: slow readout/low heat dissipation, thermal isolation
 - Once successful, this is the first visible sensor readout system onboard JAXA astronomical satellite!
 - ⇒ Prospects to apply for future astronomy mission by JAXA
 - Obtain larger FoV for the visible channel:
 - LI3030SAM has 4-5 times larger format (with same pix size) than the HiViSI

HyViSI vs Commercially available visible sensors

	Teledyne HyViSI+SideCAR	Sony IMX533CLK	Gpixel GSENSE6060BSI	Cannon LI3030SAM
Pixel number (a)	1024 × 1024	3015 × 3080	6144 × 6144	2160 × 1286
Pixel size [μm] (b)	18	3.76	10.0	19
Size $[mm]$ (a \times b)	18.4 × 18.4		61.4 × 61.4	41.04 × 24.32
A/D conversion	16 bit	14 bit	14 bit	14 bit
Efficiency			95% @ 580 nm	86% @ 550 nm
Readout Noise [e-]	17		2.3 (HDR mode)	3.4 (rms, 40°C)
Dark current [e-/sec]	0.3		0.019 @ -55°C	300 @ 60°C
Output	Digital	Digital		Analog
Comment	Space Flight proven (e.g., JWST)	VERTEX (6U CubeSAT)	Operation guaranteed down to -55°C(218 K)	, o

Baseline

Option

Summary

 MONSTER onboard HiZ-GUNDAM will provide us with a rapid follow-up capability of targets detected by EAGLE

- (1) LARGE FoV ($15 \times 15 \text{ arcmin}^2$)
- (2) simultaneous 5-band imaging at $0.5-2.5~\mu$ m
- (3) Passively cooled (radiatively) telescope (< 200 K), and a near-IR detector (<120 K)
- Possible improvement of science performances
 - BBM telescope ⇒ improvement of GRB follow-up capability
 - Visible detector ⇒ larger FoV for ch.1; application to future astronomy mission by JAXA
- Upcoming Plan (by FY2026)
 - Establish the thermal / mechanical design (in-house & industrial studies)
 - BBM optical performance test results will be available
 - Demonstration of CMOS visible sensor in space-use operation